CO2 enhanced oil recovery and storage using a gravity-enhanced process

被引:39
|
作者
Li, Liwei [1 ]
Khorsandi, Saeid [1 ]
Johns, Russell T. [1 ]
Dilmore, Robert M. [2 ]
机构
[1] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA
[2] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
基金
美国能源部;
关键词
CO2; storage; Enhanced oil recovery (EOR); Heterogeneity; Horizontal wells; Gravity enhanced; Inspectional analysis; RELATIVE PERMEABILITY; SCREENING CRITERIA; CARBON CAPTURE; FLOW; SIMULATIONS; IMPACT; MODEL;
D O I
10.1016/j.ijggc.2015.09.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 flooding offers a means to recover significant amounts of oil while simultaneously sequestering CO2. Recent methods for CO2 geological storage have focused on CO2 injection into deep brine aquifers, or by water-alternating-gas (WAG) injection in a miscible gas flooding process using vertical wells. There is significant uncertainty in the amount of CO2 that can be stored using these methods owing to reservoir heterogeneity and variations in reservoir/fluid parameters. It would be useful therefore to have a more robust process that can also increase both CO2 storage and oil recovery in a symbiotic relationship, where increased storage leads to greater oil recovery. This paper considers an alternative process that maximizes both storage and oil recovery simultaneously using only horizontal wells in a gravity-enhanced miscible process. A reduced-order model (ROM) is developed to consider a wide range of reservoir heterogeneities and fluid properties. Monte-Carlo simulations using the ROM show that achieving very high storage and oil recovery is possible using the gravity-enhanced process and that the approach is very robust. For example, after 2.0 moveable pore volumes injected (MPVI), probabilistic forecasts show that CO2 storage efficiency across two standard deviations ranges from about 81% to 93%, indicating that nearly all of the available pore space (excluding immobile water) at the end of injection is occupied by CO2. Oil recoveries after 2.0 MPVI varied from 79% to 93% of the original mass of oil-in-place (OOIP). These storage and recovery efficiencies are significantly greater than any process reported to date. Response functions developed can also be used to estimate the maximum amount of stored CO2 and corresponding oil recoveries for a wide range of reservoir and fluid properties. Such estimates are critical for regional and national assessment of CO2 storage potential. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:502 / 515
页数:14
相关论文
共 50 条
  • [1] Opportunities for Using Anthropogenic CO2 for Enhanced Oil Recovery and CO2 Storage
    Godec, Michael L.
    Kuuskraa, Vello A.
    Dipietro, Phil
    ENERGY & FUELS, 2013, 27 (08) : 4183 - 4189
  • [2] On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery
    Abedini, Ali
    Torabi, Farshid
    FUEL, 2014, 124 : 14 - 27
  • [3] On the sustainability of CO2 storage through CO2 - Enhanced oil recovery
    Farajzadeh, R.
    Eftekhari, A. A.
    Dafnomilis, G.
    Lake, L. W.
    Bruining, J.
    APPLIED ENERGY, 2020, 261
  • [4] Examining the potential of immiscible CO2 for gravity-assisted enhanced oil recovery and storage
    Hatchell, Daniel
    Benson, Sally
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6980 - 6988
  • [5] Enhanced Oil Recovery Using CO2 in Alaska
    Dogah, Banabas
    Atashbari, Vahid
    Ahmadi, Mohabbat
    Sheets, Brent
    GEOSCIENCES, 2021, 11 (02) : 1 - 26
  • [6] Characterization of CO2 storage and enhanced oil recovery in residual oil zones
    Chen, Bailian
    Pawar, Rajesh J.
    ENERGY, 2019, 183 : 291 - 304
  • [7] Gravity-Enhanced Transfer between Fracture and Matrix in Solvent-Based Enhanced Oil Recovery
    Kahrobaei, S.
    Farajzadeh, R.
    Suicmez, V. S.
    Bruining, J.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (44) : 14555 - 14565
  • [8] Compositional Modeling of Impure CO2 Injection for Enhanced Oil Recovery and CO2 Storage
    Lee, Hye-Seung
    Cho, Jinhyung
    Lee, Young-Woo
    Lee, Kun-Sang
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [9] CO2 storage potential during CO2 enhanced oil recovery in sandstone reservoirs
    Rezk, Mohamed Gamal
    Foroozesh, Jalal
    Zivar, Davood
    Mumtaz, Mudassar
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 66 (233-243) : 233 - 243
  • [10] Molecular insights into CO2 enhanced oil recovery and CO2 storage in quartz nanopores
    Li, Bing
    Sui, Hongguang
    Wang, Diansheng
    Wang, Yudou
    Zhang, Fengyun
    Yao, Jun
    GEOENERGY SCIENCE AND ENGINEERING, 2025, 246