共 50 条
Hadwiger's Theorem for definable functions
被引:20
|作者:
Baryshnikov, Y.
[1
,2
]
Ghrist, R.
[3
,4
]
Wright, M.
[5
]
机构:
[1] Univ Illinois, Dept Math, Urbana, IL USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[3] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Elect Syst Engn, Philadelphia, PA 19104 USA
[5] Huntington Univ, Dept Math, Huntington, IN USA
关键词:
Valuations;
Hadwiger measure;
Intrinsic volumes;
Euler characteristic;
VALUATIONS;
CURVATURE;
D O I:
10.1016/j.aim.2013.07.001
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Hadwiger's Theorem states that E-n-invariant convex-continuous valuations of definable sets in R-n are linear combinations of intrinsic volumes. We lift this result from sets to data distributions over sets, specifically, to definable R-valued functions on R-n. This generalizes intrinsic volumes to (dual pairs of) non-linear valuations on functions and provides a dual pair of Hadwiger classification theorems. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:573 / 586
页数:14
相关论文