Hadwiger's Theorem for definable functions

被引:20
|
作者
Baryshnikov, Y. [1 ,2 ]
Ghrist, R. [3 ,4 ]
Wright, M. [5 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[3] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Elect Syst Engn, Philadelphia, PA 19104 USA
[5] Huntington Univ, Dept Math, Huntington, IN USA
关键词
Valuations; Hadwiger measure; Intrinsic volumes; Euler characteristic; VALUATIONS; CURVATURE;
D O I
10.1016/j.aim.2013.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hadwiger's Theorem states that E-n-invariant convex-continuous valuations of definable sets in R-n are linear combinations of intrinsic volumes. We lift this result from sets to data distributions over sets, specifically, to definable R-valued functions on R-n. This generalizes intrinsic volumes to (dual pairs of) non-linear valuations on functions and provides a dual pair of Hadwiger classification theorems. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:573 / 586
页数:14
相关论文
共 50 条
  • [1] The Hadwiger Theorem on Convex Functions, I
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, 34 (06) : 1839 - 1898
  • [2] An approximate Herbrand's theorem and definable functions in metric structures
    Goldbring, Isaac
    MATHEMATICAL LOGIC QUARTERLY, 2012, 58 (03) : 208 - 216
  • [3] The Hadwiger theorem on convex functions, IV : The Klain approach
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    ADVANCES IN MATHEMATICS, 2023, 413
  • [4] A short proof of Hadwiger's characterization theorem
    Klain, DA
    MATHEMATIKA, 1995, 42 (84) : 329 - 339
  • [5] A Simplified Elementary Proof of Hadwiger's Volume Theorem
    Beifang Chen
    Geometriae Dedicata, 2004, 105 : 107 - 120
  • [6] Improvements of the theorem of Duchet and Meyniel on Hadwiger's conjecture
    Kawarabayashi, K
    Plummer, MD
    Toft, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) : 152 - 167
  • [7] A simplified elementary proof of Hadwiger's volume theorem?
    Chen, BF
    GEOMETRIAE DEDICATA, 2004, 105 (01) : 107 - 120
  • [8] Definable Davies' theorem
    Toernquist, Asger
    Weiss, William
    FUNDAMENTA MATHEMATICAE, 2009, 205 (01) : 77 - 89
  • [9] Lebesgue’s density theorem and definable selectors for ideals
    Sandra Müller
    Philipp Schlicht
    David Schrittesser
    Thilo Weinert
    Israel Journal of Mathematics, 2022, 249 : 501 - 551
  • [10] Lebesgue's density theorem and definable selectors for ideals
    Mueller, Sandra
    Schlicht, Philipp
    Schrittesser, David
    Weinert, Thilo
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 249 (02) : 501 - 551