机构:
Univ Illinois, Dept Math, Urbana, IL USA
Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USAUniv Illinois, Dept Math, Urbana, IL USA
Baryshnikov, Y.
[1
,2
]
Ghrist, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Math, Philadelphia, PA 19104 USA
Univ Penn, Dept Elect Syst Engn, Philadelphia, PA 19104 USAUniv Illinois, Dept Math, Urbana, IL USA
Ghrist, R.
[3
,4
]
Wright, M.
论文数: 0引用数: 0
h-index: 0
机构:
Huntington Univ, Dept Math, Huntington, IN USAUniv Illinois, Dept Math, Urbana, IL USA
Wright, M.
[5
]
机构:
[1] Univ Illinois, Dept Math, Urbana, IL USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[3] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Elect Syst Engn, Philadelphia, PA 19104 USA
[5] Huntington Univ, Dept Math, Huntington, IN USA
Hadwiger's Theorem states that E-n-invariant convex-continuous valuations of definable sets in R-n are linear combinations of intrinsic volumes. We lift this result from sets to data distributions over sets, specifically, to definable R-valued functions on R-n. This generalizes intrinsic volumes to (dual pairs of) non-linear valuations on functions and provides a dual pair of Hadwiger classification theorems. (C) 2013 Elsevier Inc. All rights reserved.
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China