Tensor index for large scale image retrieval

被引:4
|
作者
Zheng, Liang [1 ]
Wang, Shengjin [1 ]
Guo, Peizhen [1 ]
Liang, Hanyue [1 ]
Tian, Qi [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Univ Texas San Antonio, San Antonio, TX 78249 USA
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会;
关键词
Tensor index; Image retrieval; Bag-of-words model; QUANTIZATION; SIMILARITY;
D O I
10.1007/s00530-014-0415-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, the bag-of-words representation is widely applied in the image retrieval applications. In this model, visual word is a core component. However, compared with text retrieval, one major problem associated with image retrieval consists in the visual word ambiguity, i.e., a trade-off between precision and recall of visual matching. To address this problem, this paper proposes a tensor index structure to improve precision and recall simultaneously. Essentially, the tensor index is a multi-dimensional index structure. It combines the strengths of two state-of-the-art indexing strategies, i.e., the inverted multi-index [Babenko and Lempitsky (Computer vision and pattern recognition (CVPR), 2012 IEEE Conference, 3069-3076, 2012)] as well as the joint inverted index [Xia et al. (ICCV, 2013)] which are initially designed for approximate nearest neighbor search problems. This paper, instead, exploits their usage in the scenario of image retrieval and provides insights into how to combine them effectively. We show that on the one hand, the multi-index enhances the discriminative power of visual words, thus improving precision; on the other hand, the introduction of multiple codebooks corrects quantization artifacts, thus improving recall. Extensive experiments on two benchmark datasets demonstrate that tensor index significantly improves the baseline approach. Moreover, when incorporating methods such as Hamming embedding, we achieve competitive performances compared to the state-of-the-art ones.
引用
收藏
页码:569 / 579
页数:11
相关论文
共 50 条
  • [31] Topic modeling and improvement of image representation for large-scale image retrieval
    Nguyen Anh Tu
    Dong-Luong Dinh
    Rasel, Mostofa Kamal
    Lee, Young-Koo
    INFORMATION SCIENCES, 2016, 366 : 99 - 120
  • [32] Large-scale Image Retrieval with Sparse Binary Projections
    Ma, Changyi
    Gu, Chonglin
    Li, Wenye
    Cui, Shuguang
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1817 - 1820
  • [33] Neighborhood Discriminant Hashing for Large-Scale Image Retrieval
    Tang, Jinhui
    Li, Zechao
    Wang, Meng
    Zhao, Ruizhen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (09) : 2827 - 2840
  • [34] Coupled Binary Embedding for Large-Scale Image Retrieval
    Zheng, Liang
    Wang, Shengjin
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3368 - 3380
  • [35] ImageProof: Enabling Authentication for Large-Scale Image Retrieval
    Guo, Shangwei
    Xu, Jianliang
    Zhang, Ce
    Xu, Cheng
    Xiang, Tao
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1070 - 1081
  • [36] Large scale document image retrieval by automatic word annotation
    Sankar, K. Pramod
    Manmatha, R.
    Jawahar, C. V.
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2014, 17 (01) : 1 - 17
  • [37] Large-scale image retrieval with supervised sparse hashing
    Xu, Yan
    Shen, Fumin
    Xu, Xing
    Gao, Lianli
    Wang, Yuan
    Tan, Xiao
    NEUROCOMPUTING, 2017, 229 : 45 - 53
  • [38] Large-scale image retrieval with Sparse Embedded Hashing
    Ding, Guiguang
    Zhou, Jile
    Guo, Yuchen
    Lin, Zijia
    Zhao, Sicheng
    Han, Jungong
    NEUROCOMPUTING, 2017, 257 : 24 - 36
  • [39] Deep Product Quantization for Large-Scale Image Retrieval
    Zhai, Qi
    Jiang, Mingyan
    2019 4TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2019), 2019, : 198 - 202
  • [40] A Framework for the Revision of Large-Scale Image Retrieval Benchmarks
    Hassan, Muhammad Umair
    Shohag, Md Shakil Ahamed
    Niu, Dongmei
    Shaukat, Kamran
    Zhang, Mingxuan
    Zhao, Wenshuang
    Zhao, Xiuyang
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179