Generalized Hilbert operators on weighted Bergman spaces

被引:33
|
作者
Angel Pelaez, Jose [1 ]
Rattya, Jouni [2 ]
机构
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
[2] Univ Eastern Finland, Dept Math & Phys, Joensuu 80101, Finland
关键词
Generalized Hilbert operator; Weighted Bergman space; Muckenhoupt weight; Regular weight; Rapidly increasing weight; ANALYTIC-FUNCTIONS; LP-BEHAVIOR; MATRIX;
D O I
10.1016/j.aim.2013.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to study the generalized Hilbert operator H-g(f)(z) = integral(1)(0) f(t)g' (tz) dt acting on the weighted Bergman space A(omega)(p), where the weight function omega belongs to the class R of regular radial weights and satisfies the Muckenhoupt type condition sup(0 <= r<1) (integral(1)(t)(integral(1)(t) omega(s)ds)(-p/p)dt)(p/p') integral(r)(0) (1 - t)(-p) (integral(1)(t) omega(s)ds) dt < infinity. (dagger) If q = p, the condition on g that characterizes the boundedness (or the compactness) of H-g : A(omega)(p) -> A(omega)(q) depends on p only, but the situation is completely different in the case q not equal p in which the inducing weight omega plays a crucial role. The results obtained also reveal a natural connection to the Muckenhoupt type condition (dagger). Indeed, it is shown that the classical Hilbert operator (the case g(z) = log 1/1-z of H-g) is bounded from L-integral t1 omega(s)ds(p), ([0, 1)) (the natural restriction of A(omega)(p) functions defined on [0, 1)) to A(omega)(p) if and only if a) satisfies the condition (l.). On the way to these results decomposition norms for the weighted Bergman space A(omega)(p) are established. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 267
页数:41
相关论文
共 50 条
  • [21] Operators and multipliers on weighted Bergman spaces
    Naik, S.
    Rajbangshi, K.
    AFRIKA MATEMATIKA, 2019, 30 (1-2) : 269 - 277
  • [22] On Bergman Type Operators on Weighted Monogenic Bergman Spaces
    Avetisyan, K.
    Guerlebeck, K.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [23] Hadamard–Bergman Operators on Weighted Spaces
    Alexey Karapetyants
    Adolf Mirotin
    Evelin Morales
    Complex Analysis and Operator Theory, 2024, 18
  • [24] GENERALIZED RIEMANN-STIELTJES OPERATORS BETWEEN HARDY SPACES AND WEIGHTED BERGMAN SPACES
    Zhu, Xiangling
    UTILITAS MATHEMATICA, 2013, 92 : 17 - 24
  • [25] Operators and multipliers on weighted Bergman spaces
    S. Naik
    K. Rajbangshi
    Afrika Matematika, 2019, 30 : 269 - 277
  • [26] A Class of Operators on Weighted Bergman Spaces
    Kwon, Miyeon
    Wu, Zhijian
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (03) : 411 - 417
  • [27] Toeplitz Operators on Weighted Bergman Spaces
    Chacon, Gerardo R.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [28] A Class of Operators on Weighted Bergman Spaces
    Miyeon Kwon
    Zhijian Wu
    Integral Equations and Operator Theory, 2008, 62 : 411 - 417
  • [29] Schatten class weighted composition operators on weighted Hilbert Bergman spaces of bounded strongly pseudoconvex domain
    Huang, Cheng-shi
    Jiang, Zhi-jie
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 280 - 293
  • [30] Weighted composition operators on weighted Bergman and Dirichlet spaces
    Esmaeili, Kobra
    Kellay, Karim
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01): : 286 - 302