An advantage combined strategy for preparing bi-functional electrocatalyst in rechargeable zinc-air batteries

被引:29
|
作者
Wang, Ying [1 ,2 ,3 ]
Qiao, Mengfei [1 ,2 ,3 ]
Mamat, Xamxikamar [1 ]
机构
[1] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Key Lab Chem Plant Resources Arid Reg, State Key Lab Basis Xinjiang Indigenous Med Plant, Urumqi 830011, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc-air batteries; FeCo alloy nanoparticles; Atomic FeN2 dispersion; Ordered porous carbon; Oxygen reduction reaction; FE-N-C; OXYGEN REDUCTION REACTION; MESOPOROUS CARBON; SITES; PERFORMANCE; CATALYSTS; IRON; IDENTIFICATION; DESIGN; FE/CO;
D O I
10.1016/j.cej.2020.126214
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of rechargeable zinc-air batteries requires the rational construction and exploration of robust and cost-effective bi-functional cathode catalysts to replace common noble metal-based ones for efficient oxygen reduction/evolution reactions (ORR and OER). In this study, a new kind of hierarchically ordered porous carbon co-doped by FeCo alloy nanoparticles and FeN2 moiety was synthesized via a hard-templated molding and two-step pyrolysis strategies. Notably, rational modulation of FeCo and FeN2 endows maximal synergistic effect between the intrinsic activity of FeCo alloy nanoparticles and the atomically dispersed FeN2 moieties for OER and ORR, respectively. Furthermore, the ordered hierarchical porous structure carbon matrix possessing a large surface area can accelerate mass transfer, enlarge the contact area with electrolyte, and expose more active sites which buried deeply in the material. As a result, the obtained FeCo/FeN2/NHOPC exhibited remarkable bi-functional catalytic activity in terms of a more positive half-wave potential (0.86 V) compared with PVC (0.84 V) for ORR in alkaline medium, a low overpotential of 340 mV for OER in the same condition, and the reversible oxygen electrode index of 0.71 V. Moreover, when served as a cathode catalyst in a home-made rechargeable zinc-air battery, the material performs the superior reactive activity with a high energy density of 810.3 mWh g(zn)(-1) , a peak power density of 128.7 mW cm(-2) , and excellent stability over 120 cycles at 10 mA cm(-2) without apparent degradation. Importantly, the advantage combined strategy proposed in this work indicates an auspicious direction for synthesizing high-performance bi-functional catalysts.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Rechargeable zinc-air batteries vie for portable market
    Chin, S
    ELECTRONIC PRODUCTS MAGAZINE, 1997, 40 (03): : 17 - 18
  • [22] Projecting the Specific Energy of Rechargeable Zinc-Air Batteries
    Hopkins, Brandon J.
    Chervin, Christopher N.
    Long, Jeffrey W.
    Rolison, Debra R.
    Parker, Joseph F.
    ACS ENERGY LETTERS, 2020, 5 (11): : 3405 - 3408
  • [23] Electrospun nanofibers and their applications in rechargeable zinc-air batteries
    Batool, Nadia
    Ahmad, Nazir
    Liu, Jiao
    Han, Xiao-Feng
    Zhang, Tian-Heng
    Wang, Wen-Tao
    Yang, Ruizhi
    Tian, Jing-Hua
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (07) : 2950 - 2966
  • [24] Recent Progress in Electrically Rechargeable Zinc-Air Batteries
    Fu, Jing
    Liang, Ruilin
    Liu, Guihua
    Yu, Aiping
    Bai, Zhenyu
    Yang, Lin
    Chen, Zhongwei
    ADVANCED MATERIALS, 2019, 31 (31)
  • [25] Air-Cathode Interface-Engineered Electrocatalyst for Solid-State Rechargeable Zinc-Air Batteries
    Manna, Narugopal
    Singh, Santosh K.
    Kurian, Maria
    Torris, Arun
    Kurungot, Sreekumar
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07): : 8756 - 8768
  • [26] CoP nanoparticles embedded in three-dimensional porous network-like structured N, O co-doped carbon nanofibers as an effective bi-functional electrocatalyst for rechargeable zinc-air batteries
    Deng, Nanping
    Zeng, Qiang
    Feng, Yang
    Gao, Hongjing
    Wang, Gang
    Yan, Jing
    Zheng, Tinglu
    Liu, Yong
    Kang, Weimin
    Cheng, Bowen
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (16) : 4823 - 4838
  • [27] Fe-MOF-Derived Efficient ORR/OER Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Li, Yun-Wu
    Zhang, Wen-Jie
    Li, Jing
    Ma, Hui-Yan
    Du, Hong-Mei
    Li, Da-Cheng
    Wang, Su-Na
    Zhao, Jin-Sheng
    Dou, Jian-Min
    Xu, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 44710 - 44719
  • [28] Ultrafine cobalt nitride nanoparticles supported on carbon nanotubes as efficient electrocatalyst for rechargeable zinc-air batteries
    Xu, Ruizhi
    Luo, Fang
    Li, Min
    Yang, Zehui
    CHEMICAL COMMUNICATIONS, 2019, 55 (89) : 13394 - 13397
  • [29] Rechargeable Zinc-Air Batteries with Seawater Electrolyte andCranberry Bean Shell-Derived Carbon Electrocatalyst
    Mulyadewi, Anggraeni
    Mahbub, Muhammad Adib Abdillah
    Irmawati, Yuyun
    Balqis, Falihah
    Adios, Celfi Gustine
    Sumboja, Afriyanti
    ENERGY & FUELS, 2022, 36 (10) : 5475 - 5482
  • [30] RuCoOx Nanofoam as a High-Performance Trifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries and Water Splitting
    Zhou, Chenhui
    Zhao, Siming
    Meng, Haibing
    Han, Ying
    Jiang, Qinyuan
    Wang, Baoshun
    Shi, Xiaofei
    Zhang, Wenshuo
    Zhang, Liang
    Zhang, Rufan
    NANO LETTERS, 2021, 21 (22) : 9633 - 9641