Federated Learning with Bayesian Differential Privacy

被引:0
|
作者
Triastcyn, Aleksei [1 ]
Faltings, Boi [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Artificial Intelligence Lab, Lausanne, Switzerland
关键词
federated learning; differential privacy; privacy accounting; deep learning; RENYI DIVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below epsilon = 1 at the client level, and below epsilon = 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.
引用
收藏
页码:2587 / 2596
页数:10
相关论文
共 50 条
  • [11] Utility Optimization of Federated Learning with Differential Privacy
    Zhao, Jianzhe
    Mao, Keming
    Huang, Chenxi
    Zeng, Yuyang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [12] Differential Privacy for Deep and Federated Learning: A Survey
    El Ouadrhiri, Ahmed
    Abdelhadi, Ahmed
    IEEE ACCESS, 2022, 10 : 22359 - 22380
  • [13] Differential Privacy in HyperNetworks for Personalized Federated Learning
    Nemala, Vaisnavi
    Phung Lai
    NhatHai Phan
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4224 - 4228
  • [14] Hierarchical federated learning with global differential privacy
    Long, Youqun
    Zhang, Jianhui
    Wang, Gaoli
    Fu, Jie
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (07): : 3741 - 3758
  • [15] Personalized Graph Federated Learning With Differential Privacy
    Gauthier F.
    Gogineni V.C.
    Werner S.
    Huang Y.-F.
    Kuh A.
    IEEE Transactions on Signal and Information Processing over Networks, 2023, 9 : 736 - 749
  • [16] Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning
    Tayyeh, Huda Kadhim
    AL-Jumaili, Ahmed Sabah Ahmed
    COMPUTERS, 2024, 13 (11)
  • [17] Shuffed Model of Differential Privacy in Federated Learning
    Girgis, Antonious M.
    Data, Deepesh
    Diggavi, Suhas
    Kairouz, Peter
    Suresh, Ananda Theertha
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [18] Privacy amplification for wireless federated learning with Renyi differential privacy and subsampling
    Tan, Qingjie
    Che, Xujun
    Wu, Shuhui
    Qian, Yaguan
    Tao, Yuanhong
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (11): : 7021 - 7039
  • [19] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [20] Efficient federated learning privacy preservation method with heterogeneous differential privacy
    Ling, Jie
    Zheng, Junchang
    Chen, Jiahui
    COMPUTERS & SECURITY, 2024, 139