TENSOR ENSEMBLE LEARNING FOR MULTIDIMENSIONAL DATA

被引:0
|
作者
Kisil, Ilia [1 ]
Moniri, Ahmad [1 ]
Mandic, Danilo P. [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Tensor Decomposition; Multidimensional Data; Ensemble Learning; Classification; Bagging; DECOMPOSITIONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In big data applications, classical ensemble learning is typically infeasible on the raw input data and dimensionality reduction techniques are necessary. To this end, novel framework that generalises classic flat-view ensemble learning to multidimensional tensor-valued data is introduced. This is achieved by virtue of tensor decompositions, whereby the proposed method, referred to as tensor ensemble learning (TEL), decomposes every input data sample into multiple factors which allows for a flexibility in the choice of multiple learning algorithms in order to improve test performance. The TEL framework is shown to naturally compress multidimensional data in order to take advantage of the inherent multi-way data structure and exploit the benefit of ensemble learning. The proposed framework is verified through the application of Higher Order Singular Value Decomposition (HOSVD) to the ETH-80 dataset and is shown to outperform the classical ensemble learning approach of bootstrap aggregating.
引用
收藏
页码:1358 / 1362
页数:5
相关论文
共 50 条
  • [41] Droplet Ensemble Learning on Drifting Data Streams
    Loeffel, Pierre-Xavier
    Bifet, Albert
    Marsala, Christophe
    Detyniecki, Marcin
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVI, IDA 2017, 2017, 10584 : 210 - 222
  • [42] Incremental learning of ensemble classifiers on ECG data
    Macek, J
    18TH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2005, : 315 - 320
  • [43] Learning of classifier ensemble using virtual data
    Jang, M
    Cho, S
    IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, 2000, : 955 - 959
  • [44] Multicriteria Classifier Ensemble Learning for Imbalanced Data
    Wegier, Weronika
    Koziarski, Michal
    Wozniak, Micha
    Wegier, Weronika
    IEEE Access, 2022, 10 : 16807 - 16818
  • [45] An Improved Ensemble Learning for Imbalanced Data Classification
    Yuan, Zhengwu
    Zhao, Pu
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 408 - 411
  • [46] Multicriteria Classifier Ensemble Learning for Imbalanced Data
    Wegier, Weronika
    Koziarski, Michal
    Wozniak, Micha
    IEEE ACCESS, 2022, 10 : 16807 - 16818
  • [47] Compact representation of multidimensional data using tensor rank-one decomposition
    Wang, HC
    Ahuja, N
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, : 44 - 47
  • [48] Ensemble of Tensor Train Decomposition and Quantization Methods for Deep Learning Model Compression
    Ademola, Olutosin Ajibola
    Eduard, Petlenkov
    Mairo, Leier
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [49] Measuring ensemble interdependence in a string quartet through analysis of multidimensional performance data
    Papiotis, Panos
    Marchini, Marco
    Perez-Carrillo, Alfonso
    Maestre, Esteban
    FRONTIERS IN PSYCHOLOGY, 2014, 5
  • [50] Fast Multidimensional Ensemble Empirical Mode Decomposition Using a Data Compression Technique
    Feng, Jiaxin
    Wu, Zhaohua
    Liu, Guosheng
    JOURNAL OF CLIMATE, 2014, 27 (10) : 3492 - 3504