H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph

被引:26
|
作者
Xie, Jinshan [1 ,2 ]
Chang, An [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Peoples R China
[2] Longyan Univ, Sch Math & Comp Sci, Longyan 364012, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian tensor; hypergraph; H-eigenvalue; bipartition; maximum degree; bound; edge cut; PERRON-FROBENIUS THEOREM; BOUNDS; NUMBER;
D O I
10.1007/s11464-012-0266-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The signless Laplacian tensor and its H-eigenvalues for an even uniform hypergraph are introduced in this paper. Some fundamental properties of them for an even uniform hypergraph are obtained. In particular, the smallest and the largest H-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph are discussed, and their relationships to hypergraph bipartition, minimum degree, and maximum degree are described. As an application, the bounds of the edge cut and the edge connectivity of the hypergraph involving the smallest and the largest H-eigenvalues are presented.
引用
收藏
页码:107 / 127
页数:21
相关论文
共 50 条
  • [41] The Laplacian of a uniform hypergraph
    Hu, Shenglong
    Qi, Liqun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (02) : 331 - 366
  • [42] The Laplacian of a uniform hypergraph
    Shenglong Hu
    Liqun Qi
    Journal of Combinatorial Optimization, 2015, 29 : 331 - 366
  • [43] THE CLIQUE AND COCLIQUE NUMBERS' BOUNDS BASED ON THE H-EIGENVALUES OF UNIFORM HYPERGRAPHS
    Xie, Jinshan
    Qi, Liqun
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 318 - 327
  • [44] Convergence analysis of the largest and smallest H-eigenvalues for a class of tensor sequences
    Lan, Zhaofeng
    Liu, Jianxun
    Jiang, Xianzhen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) : 3395 - 3409
  • [45] Lower and upper bounds for H-eigenvalues of even order real symmetric tensors
    Jin, Hongwei
    Kannan, M. Rajesh
    Bai, Minru
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (07): : 1402 - 1416
  • [46] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Xiaodan Chen
    Guoliang Hao
    Dequan Jin
    Jingjian Li
    Czechoslovak Mathematical Journal, 2018, 68 : 601 - 610
  • [47] Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 467 - 476
  • [48] On the sum of distance signless Laplacian eigenvalues of graphs
    Khan, Saleem
    Pirzada, S.
    Das, Kinkar Chandra
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,
  • [49] Upper bounds on the (signless) Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    Shan, Haiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 334 - 341
  • [50] Some Results on the Bounds of Signless Laplacian Eigenvalues
    Shuchao Li
    Yi Tian
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 131 - 141