Partial metric monoids and semivaluation spaces

被引:60
|
作者
Romaguera, S [1 ]
Schellekens, M
机构
[1] Univ Politecn Valencia, Inst Matemat Pura & Aplicada, Escuela Caminos, E-46071 Valencia, Spain
[2] Natl Univ Ireland Univ Coll Cork, Dept Comp Sci, Ctr Efficiency Oriented Languages, Cork, Ireland
基金
爱尔兰科学基金会;
关键词
partial metric monoid; quasi-metric; weightable; meet semilattice; semivaluation; interval domain; domain of words; dual complexity space;
D O I
10.1016/j.topol.2005.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stable partial metric spaces form a fundamental concept in Quantitative Domain Theory. Indeed, all domains have been shown to be quantifiable via a stable partial metric. Monoid operations arise naturally in a quantitative context and hence play a crucial role in several applications. Here, we show that the structure of a stable partial metric monoid provides a suitable framework for a unified approach to some interesting examples of monoids that appear in Theoretical Computer Science. We also introduce the notion of a sentivaluation monoid and show that there is a bijection between stable partial metric monoids and semivaluation monoids. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:948 / 962
页数:15
相关论文
共 50 条
  • [21] On Strong Fuzzy Partial Metric Spaces
    Guner, Elif
    Aygun, Halis
    MATHEMATICAL METHODS FOR ENGINEERING APPLICATIONS, ICMASE 2023, 2024, 439 : 253 - 266
  • [22] ALTERING POINTS IN PARTIAL METRIC SPACES
    Nedelcheva, Diana K.
    PROCEEDINGS OF THE TWENTY-FIRST INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2020, 21 : 221 - 231
  • [23] Ideal convergence in partial metric spaces
    Gulle, Esra
    Dundar, Erdinc
    Ulusu, Ugur
    SOFT COMPUTING, 2023, 27 (19) : 13789 - 13795
  • [24] Some questions on partial metric spaces
    Ge Xun
    Lin Shou
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2020, 35 (04) : 392 - 398
  • [25] Some Remarks on Partial Metric Spaces
    Lu, Hanchuan
    Zhang, Heng
    He, Wei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 3065 - 3081
  • [26] STATISTICAL CONVERGENCE IN PARTIAL METRIC SPACES
    Nuray, Fatih
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 155 - 160
  • [27] Generalized contractions on partial metric spaces
    Altun, Ishak
    Sola, Ferhan
    Simsek, Hakan
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (18) : 2778 - 2785
  • [28] Some questions on partial metric spaces
    Xun Ge
    Shou Lin
    Applied Mathematics-A Journal of Chinese Universities, 2020, 35 : 392 - 398
  • [29] Ideal convergence in partial metric spaces
    Esra Gülle
    Erdinç Dündar
    Uğur Ulusu
    Soft Computing, 2023, 27 : 13789 - 13795
  • [30] Compactness and completeness in partial metric spaces
    Mykhaylyuk, Volodymyr
    Myronyk, Vadym
    TOPOLOGY AND ITS APPLICATIONS, 2020, 270