A multi-objective tabu search algorithm based on decomposition for multi-objective unconstrained binary quadratic programming problem

被引:21
|
作者
Zhou, Ying [1 ]
Wang, Jiahai [2 ]
Wu, Ziyan [3 ]
Wu, Keke [1 ]
机构
[1] Shenzhen Inst Informat Technol, Sch Comp Sci, Shenzhen 518172, Peoples R China
[2] Sun Yat Sen Univ, Dept Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] China Secur Depository & Clearing Corp Ltd, Shenzhen Branch, 2012 Shennan Blvd, Shenzhen 518038, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization; Decomposition; Tabu search; HOPFIELD NETWORK; LOCAL SEARCH; EVOLUTIONARY; MOEA/D;
D O I
10.1016/j.knosys.2017.11.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unconstrained binary quadratic programming problem (UBQP) is a well-known NP-hard problem. In this problem, a quadratic 0-1 function is maximized. Numerous single-objective combinatorial optimization problems can be expressed as UBQP. To enhance the expressive ability of UBQP, a multi-objective extension of UBQP and a set of benchmark instances have been introduced recently. A decomposition-based multi-objective tabu search algorithm for multi-objective UBQP is proposed in this paper. In order to obtain a good Pareto set approximation, a novel weight vector generation method is first introduced. Then, the problem is decomposed into a number of subproblems by means of scalarizing approaches. The choice of different types of scalarizing approaches can greatly affect the performance of an algorithm. Therefore, to take advantages of different scalarizing approaches, both the weighted sum approach and the Tchebycheff approach are utilized adaptively in the proposed algorithm. Finally, in order to better utilize the problem-specific knowledge, a tabu search procedure is designed to further optimize these subproblems simultaneously. Experimental results on 50 benchmark instances indicate that the proposed algorithm performs better than current state-of-the-art algorithms. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 30
页数:13
相关论文
共 50 条
  • [31] Solving multi-objective optimization problem using cuckoo search algorithm based on decomposition
    Liang Chen
    Wenyan Gan
    Hongwei Li
    Kai Cheng
    Darong Pan
    Li Chen
    Zili Zhang
    Applied Intelligence, 2021, 51 : 143 - 160
  • [32] Solving multi-objective optimization problem using cuckoo search algorithm based on decomposition
    Chen, Liang
    Gan, Wenyan
    Li, Hongwei
    Cheng, Kai
    Pan, Darong
    Chen, Li
    Zhang, Zili
    APPLIED INTELLIGENCE, 2021, 51 (01) : 143 - 160
  • [33] A Niching Multi-objective Harmony Search Algorithm for Multimodal Multi-objective Problems
    Qu, B. Y.
    Li, G. S.
    Guo, Q. Q.
    Yan, L.
    Chai, X. Z.
    Guo, Z. Q.
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1267 - 1274
  • [34] Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
    Yannibelli, Virginia
    Amandi, Analia
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (07) : 2421 - 2434
  • [35] A genetic algorithm for unconstrained multi-objective optimization
    Long, Qiang
    Wu, Changzhi
    Huang, Tingwen
    Wang, Xiangyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2015, 22 : 1 - 14
  • [36] Multi-objective Oriented Search Algorithm for Multi-objective Reactive Power Optimization
    Zhang, Xuexia
    Chen, Weirong
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 232 - 241
  • [37] A Tabu Search for Multi-Objective Single Row Facility Layout Problem
    Lenin, N.
    Kumar, M. Siva
    Ravindran, D.
    Islam, M. N.
    JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2014, 13 (01) : 17 - 40
  • [38] The development of a multi-objective Tabu Search algorithm for continuous optimisation problems
    Jaeggi, D. M.
    Parks, G. T.
    Kipouros, T.
    Clarkson, P. J.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 185 (03) : 1192 - 1212
  • [39] Multi-Objective Quantum Evolutionary Algorithm for Discrete Multi-Objective Combinational Problem
    Wei, Xin
    Fujimura, Shigeru
    INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010), 2010, : 39 - 46
  • [40] Analyzing the performance measures of Multi-Objective Water Cycle Algorithm for Multi-Objective Linear Fractional Programming Problem
    Veeramani, C.
    Sharanya, S.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 297 - 306