Initial wavefunction dependence on atom interferometry phases

被引:4
|
作者
Jansen, M. A. H. M. [1 ]
van Leeuwen, K. A. H. [2 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] Eindhoven Univ Technol, NL-5600MB Eindhoven, Netherlands
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2008年 / 93卷 / 2-3期
关键词
D O I
10.1007/s00340-008-3215-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we present a mathematical procedure to analytically calculate the output signal of a pulsed atom interferometer in an inertial field. Using the well-known ABCD xi method we take into account the full wave dynamics of the atoms with a first order treatment of the wavefront distortion by the laser pulses. Using a numerical example we study the effect of both the length of the beam splitting laser pulses and of the width of the initial spatial distribution of the atoms. First, we find that in a general inertial field the interferometer only has a limited window in terms of the initial width (centered around 100 mu m in the example calculation) in which interference fringes are visible at all. This effect is caused by the inevitable statistical spread in atomic parameters, such as initial position and momentum, and the dependence of the interferometer phase on these. In the optimum case, the useful range of the initial width is formed by the range in which both the spatial distribution and the diffraction limited momentum spread are small enough to avoid large phase differences over the atomic wavefunction. As a second result we find that the interferometer phase depends strongly on the length of the laser pulses and, to a smaller extent, on the initial width of the atomic cloud. This spatial dependency is relatively small (similar to 10(-5) rad) and justifies semiclassical approximations, as used in other calculations, for most experiments. New high-accuracy experiments, however, will come in the range where this effect is no longer negligible.
引用
收藏
页码:389 / 401
页数:13
相关论文
共 50 条
  • [31] Robust atom optics for Bragg atom interferometry
    Louie, Garrett
    Chen, Zilin
    Deshpande, Tejas
    Kovachy, Timothy
    NEW JOURNAL OF PHYSICS, 2023, 25 (08):
  • [32] Adaptive atom-optics in atom interferometry
    Marable, ML
    Savard, TA
    Thomas, JE
    OPTICS COMMUNICATIONS, 1997, 135 (1-3) : 14 - 18
  • [33] Bloch Wavefunction Interferometry of Driven Electron-Hole States
    O'Hara, Seamus D.
    Costello, Joseph B.
    Wu, Qile
    West, Ken
    Pfeiffer, Loren
    Sherwin, Mark S.
    2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ, 2023,
  • [34] APPROXIMATE HARTREE-FOCK WAVEFUNCTION FOR HELIUM ATOM
    ZUNG, JT
    PARR, RG
    JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (09): : 2888 - &
  • [35] Getting the measure of atom interferometry
    Dos Santos, Franck Pereira
    Landragin, Arnaud
    PHYSICS WORLD, 2007, 20 (11) : 32 - 37
  • [36] Ultracold atom interferometry in space
    Lachmann, Maike D.
    Ahlers, Holger
    Becker, Dennis
    Dinkelaker, Aline N.
    Grosse, Jens
    Hellmig, Ortwin
    Muentinga, Hauke
    Schkolnik, Vladimir
    Seidel, Stephan T.
    Wendrich, Thijs
    Wenzlawski, Andre
    Carrick, Benjamin
    Gaaloul, Naceur
    Luedtke, Daniel
    Braxmaier, Claus
    Ertmer, Wolfgang
    Krutzik, Markus
    Laemmerzahl, Claus
    Peters, Achim
    Schleich, Wolfgang P.
    Sengstock, Klaus
    Wicht, Andreas
    Windpassinger, Patrick
    Rasel, Ernst M.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [37] Atom interferometry and the gravitational redshift
    Sinha, Supurna
    Samuel, Joseph
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (14)
  • [38] Testing gravity with atom interferometry
    Tino, G. M.
    ATOM INTERFEROMETRY, 2014, 188 : 457 - 491
  • [39] Atom interferometry with Mg beams
    Bagayev, SN
    Baraulia, VI
    Bonert, AE
    Goncharov, AN
    Seydaliev, MR
    Tychkov, AS
    LASER PHYSICS, 2001, 11 (11) : 1178 - 1186
  • [40] MAGNETIC COHERENCES IN ATOM INTERFEROMETRY
    SCHMIEDMAYER, J
    EKSTROM, CR
    CHAPMAN, MS
    HAMMOND, TD
    PRITCHARD, DE
    JOURNAL DE PHYSIQUE II, 1994, 4 (11): : 2029 - 2042