ALMOST INTERSECTING FAMILIES OF SETS

被引:11
|
作者
Gerbner, Daniel [2 ]
Lemons, Nathan [3 ]
Palmer, Cory [1 ]
Patkos, Balazs [2 ]
Szecsi, Vajk [4 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Cent European Univ, Dept Math & Its Applicat, H-1051 Budapest, Hungary
关键词
extremal set theory; intersection theorems; Sperner-type theorems; SYSTEMS; THEOREMS; NUMBER; PAIRS;
D O I
10.1137/120878744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let us write D-F(G) = {F is an element of F : F boolean AND G = circle divide} for a set G and a family F. Then a family F of sets is said to be (<= l)-almost intersecting (l-almost intersecting) if for any F is an element of F we have vertical bar D-F(F)vertical bar <= l (vertical bar D-F(F)vertical bar = l). In this paper we investigate the problem of finding the maximum size of an (<= l)-almost intersecting (l-almost intersecting) family F.
引用
收藏
页码:1657 / 1669
页数:13
相关论文
共 50 条
  • [31] ALMOST DISJOINT FAMILIES OF REPRESENTING SETS
    BALANDA, KP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 27 (03) : 477 - 479
  • [32] Almost disjoint families of connected sets
    Juhász, I
    van Mill, J
    TOPOLOGY AND ITS APPLICATIONS, 2005, 152 (03) : 209 - 218
  • [33] Almost computably enumerable families of sets
    Kalimullin, I. Sh.
    SBORNIK MATHEMATICS, 2008, 199 (9-10) : 1451 - 1458
  • [34] On t-intersecting families of signed sets and permutations
    Borg, Peter
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3310 - 3317
  • [35] Crossing and intersecting families of geometric graphs on point sets
    J. L. Álvarez-Rebollar
    J. Cravioto-Lagos
    N. Marín
    O. Solé-Pi
    J. Urrutia
    Graphs and Combinatorics, 2024, 40
  • [36] Multiple cross-intersecting families of signed sets
    Borg, Peter
    Leader, Imre
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (05) : 583 - 588
  • [37] Schutte's tournament problem and intersecting families of sets
    Borowiecki, M
    Grytczuk, J
    Haluszczak, M
    Tuza, Z
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (04): : 359 - 364
  • [38] Voting fairly: Transitive maximal intersecting families of sets
    Loeb, DE
    Conway, AR
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) : 386 - 410
  • [39] Crossing and intersecting families of geometric graphs on point sets
    Alvarez-Rebollar, J. L.
    Cravioto-Lagos, J.
    Marin, N.
    Sole-Pi, O.
    Urrutia, J.
    GRAPHS AND COMBINATORICS, 2024, 40 (01)
  • [40] On cross-intersecting families of independent sets in graphs
    Kamat, Vikram
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 50 : 171 - 181