Uranium complexes formed at hematite surfaces colonized by sulfate-reducing bacteria

被引:18
|
作者
Neal, AL
Amonette, JE
Peyton, BM
Geesey, GG [1 ]
机构
[1] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA
[2] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA
[3] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[4] Washington State Univ, Ctr Multiphase Environm Res, Pullman, WA 99164 USA
关键词
D O I
10.1021/es030648m
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Modeling uranium (U)transportin subsurface environments requires a thorough knowledge of mechanisms likely to restrict its mobility, such as surface complexation, precipitation, and colloid formation. In closed systems, sulfate-reducing bacteria (SRB) such as Desulfovibrio spp. demonstrably affect U immobilization by enzymatic reduction of U(VI) species (primarily the uranyl ion, UO22+, and its complexes) to U(IV). However, our understanding of such interactions under chronic U(VI) exposure in dynamic systems is limited. As a first step to understanding such interactions, we performed bioreactor experiments under continuous flow to study the effect of a biofilm of the sulfate-reducing bacterium Desulfovibrio desulfuricans attached to specular hematite (alphat-Fe2O3) surfaces on surf ace-associated U(VI) complexation, transformation, and mobility. Employing real-time microscopic observation and X-ray photoelectron spectroscopy (XPS), we show that the characteristics of the U(VI) complex(es) formed at the hematite surface are influenced by the composition of the bulk aqueous phase flowing across the surface and by the presence of surface-associated SRB. The XPS data further suggest higher levels of U associated with hematite surfaces colonized by SRB than with bacteria-free surfaces. Microscopic observations indicate that at least a portion of the U(VI) that accumulates in the presence of the SRB is exterior to the cells, possibly associated with the extracellular biofilm matrix. The U4f(7/2) core-region spectrum and U5f(2) valence-band spectrum provide preliminary evidence that the SRB-colonized hematite surface accumulates both U(VI) and U(IV) phases, whereas only the U(VI) phase(s) accumulates on uncolonized hematite surfaces. The results suggest that mineral surfaces exposed to a continuously replenished supply of U(VI)-containing aqueous phase will accumulate U phases that may be more representative of those that exist in U-contaminated aquifers than those which accumulate in closed experimental systems. These phases should be considered in models attempting to predict U transport through subsurface environments.
引用
收藏
页码:3019 / 3027
页数:9
相关论文
共 50 条
  • [31] CATHODIC DEPOLARIZATION BY SULFATE-REDUCING BACTERIA
    COSTELLO, JA
    SOUTH AFRICAN JOURNAL OF SCIENCE, 1974, 70 (07) : 202 - 204
  • [32] OPTIMIZING SUBSTRATE FOR SULFATE-REDUCING BACTERIA
    CHANG, LK
    UPDEGRAFF, DM
    WILDEMAN, TR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 38 - CHED
  • [33] SULFATE-REDUCING BACTERIA IN BOVINE FECES
    CARLI, T
    DIKER, KS
    EYIGOR, A
    LETTERS IN APPLIED MICROBIOLOGY, 1995, 21 (04) : 228 - 229
  • [34] SULFATE-REDUCING BACTERIA IN THE PERIODONTAL POCKET
    VANDERHOEVEN, JS
    SCHAEKEN, MJM
    JOURNAL OF DENTAL RESEARCH, 1995, 74 : 587 - 587
  • [35] Reduction of molybdate by sulfate-reducing bacteria
    Biswas, Keka C.
    Woodards, Nicole A.
    Xu, Huifang
    Barton, Larry L.
    BIOMETALS, 2009, 22 (01) : 131 - 139
  • [36] Metallo proteins in sulfate-reducing bacteria
    Fritz, G
    Büchert, T
    Steuber, J
    Kroneck, PMH
    JOURNAL OF INORGANIC BIOCHEMISTRY, 1999, 74 (1-4) : 196 - 196
  • [37] SULFATE-REDUCING BACTERIA IN MARINE SEDIMENTS
    ZOBELL, CE
    RITTENBERG, SC
    JOURNAL OF MARINE RESEARCH, 1948, 7 (03) : 602 - 617
  • [38] THE NUTRITION AND PHYSIOLOGY OF SULFATE-REDUCING BACTERIA
    PARKES, RJ
    JOURNAL OF APPLIED BACTERIOLOGY, 1983, 55 (03): : R3 - R3
  • [39] ELECTROKINETIC PROPERTIES OF SULFATE-REDUCING BACTERIA
    ULANOVSKII, IV
    RUDENKO, EK
    SUPRUN, EA
    LEDENEV, AV
    MICROBIOLOGY, 1980, 49 (01) : 98 - 103
  • [40] PHYSIOLOGY AND ECOLOGY OF THE SULFATE-REDUCING BACTERIA
    GIBSON, GR
    JOURNAL OF APPLIED BACTERIOLOGY, 1990, 69 (06): : 769 - 797