Singularities at grain triple junctions in two-dimensional polycrystals with cubic and orthotropic grains

被引:13
|
作者
Picu, RC [1 ]
Gupta, V [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT MECH & AEROSP ENGN,LOS ANGELES,CA 90095
关键词
D O I
10.1115/1.2788863
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Stress singularities at grain triple junctions are evaluated for various asymmetric grain boundary configurations and random orientations of cubic and orthotropic grains. The analysis is limited to elastic plane-strain deformation and carried out using the Eshelby-Stroh formalism for anisotropic elasticity. For both the cubic and ASME orthotropic grains, the most singular configuration corresponds to the fully symmetric case with grain boundaries 120 deg apart, and with symmetric orientations of the material axes. The magnitude of the singularities are obtained for several engineering polycrystals.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [31] Disorder in two-dimensional Josephson junctions
    Horovitz, B
    Golub, A
    PHYSICAL REVIEW B, 1997, 55 (21): : 14499 - 14512
  • [32] Numerical homogenization of nonlinear viscoplastic two-dimensional polycrystals
    Legoll, Frederic
    COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (2-3): : 309 - 325
  • [33] CYCLIC HARDENING BEHAVIOR OF POLYCRYSTALS WITH PENETRABLE GRAIN BOUNDARIES:TWO-DIMENSIONAL DISCRETE DISLOCATION DYNAMICS SIMULATION
    Chuantao Hou Zhenhuan Li~* Minsheng Huang Chaojun Ouyang (1 Department of Mechanics
    Acta Mechanica Solida Sinica, 2009, 22 (04) : 295 - 306
  • [34] Cyclic Hardening Behavior of Polycrystals with Penetrable Grain Boundaries: Two-Dimensional Discrete Dislocation Dynamics Simulation
    Hou C.
    Li Z.
    Huang M.
    Ouyang C.
    Acta Mechanica Solida Sinica, 2009, 22 (4) : 295 - 306
  • [35] CYCLIC HARDENING BEHAVIOR OF POLYCRYSTALS WITH PENETRABLE GRAIN BOUNDARIES: TWO-DIMENSIONAL DISCRETE DISLOCATION DYNAMICS SIMULATION
    Hou, Chuantao
    Li, Zhenhuan
    Huang, Minsheng
    Ouyang, Chaojun
    ACTA MECHANICA SOLIDA SINICA, 2009, 22 (04) : 295 - 306
  • [36] Numerical homogenization of nonlinear viscoplastic two-dimensional polycrystals
    Legoll, Frédéric
    Computational and Applied Mathematics, 2004, 23 (2-3) : 309 - 325
  • [37] TWO-DIMENSIONAL DYNAMICS OF CUBIC MAPS
    Djellit, I.
    Selmani, W.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (03): : 427 - 438
  • [38] Interpolation by two-dimensional cubic convolution
    Shi, JZ
    Reichenbach, SE
    VISUAL INFORMATION PROCESSING XII, 2003, 5108 : 135 - 146
  • [39] DERIVATIONS IN TWO-DIMENSIONAL NORMAL-SINGULARITIES
    SCHEJA, G
    WIEBE, H
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1982, 52 : 104 - 119
  • [40] Lagrangian singularities of steady two-dimensional flow
    Pauls, W
    Matsumoto, T
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2005, 99 (01): : 61 - 75