Bed Agglomeration during Bio-oil Fast Pyrolysis in a Fluidized-Bed Reactor

被引:20
|
作者
Gao, Wenran [1 ]
Zhang, Mingming [1 ]
Wu, Hongwei [1 ]
机构
[1] Curtin Univ, Dept Chem Engn, GPO Box U1987, Perth, WA 6845, Australia
基金
澳大利亚研究理事会;
关键词
WATER-SOLUBLE FRACTION; BIOMASS FAST PYROLYSIS; MALLEE BIOMASS; WESTERN-AUSTRALIA; BIOSLURRY FUELS; CRUDE GLYCEROL; COMBUSTION; BIOCHAR; QUANTIFICATION; GASIFICATION;
D O I
10.1021/acs.energyfuels.8b00333
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study investigates bed agglomeration during fast pyrolysis of bio-oil in a fluidized-bed reactor at temperatures of 500-800 degrees C. The samples used include bio-oil, bio-oil water-soluble fraction (WSF), bio-oil water-insoluble fraction (WIF), and selected model compounds. Increasing pyrolysis temperature from 500 to 800 degrees C decreases the agglomeration yields of bio-oil, WSF, and WIF from 40% to 15%, 26.2% to 11.6%, and 15.0% to 5.2%, respectively. Investigation using model compounds suggests that the interactions between lignin-derived oligomers and sugar are mainly responsible for the high bed agglomeration yields of bio-oil and WSF, and such interactions weaken as pyrolysis temperature increases. Water has an insignificant effect on bed agglomeration during bio-oil or WSF pyrolysis. The results also show that the bed agglomeration yield and the formation of tar (and/or coke) are in broad linear correlations, indicating that the tar (and/or coke) formed during fast pyrolysis contributes to the bed agglomeration of bio-oil. The linear correlation from the data of bio-oil has a steeper gradient compared to that of WSF and WIF, clearly indicating the synergy taking place between the WSF and WIF during fast pyrolysis in enhancing bed agglomeration.
引用
收藏
页码:3608 / 3613
页数:6
相关论文
共 50 条
  • [41] Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed
    Heo, Hyeon Su
    Park, Hyun Ju
    Park, Young-Kwon
    Ryu, Changkook
    Suh, Dong Jin
    Suh, Young-Woong
    Yim, Jin-Heong
    Kim, Seung-Soo
    BIORESOURCE TECHNOLOGY, 2010, 101 : S91 - S96
  • [42] Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst
    Hoang Vu Ly
    Lim, Dong-Hyeon
    Sim, Jae Wook
    Kim, Seung-Soo
    Kim, Jinsoo
    ENERGY, 2018, 162 : 564 - 575
  • [43] Modelling of bio-oil steam gasification in a fluidized bed reactor
    Ghezelchi, Mansoor Hassani
    Wu, Hongwei
    FUEL, 2018, 220 : 575 - 585
  • [44] Diagnosis of bed agglomeration during biomass pyrolysis in fluidized-bed at a wide range of temperatures
    Burton, Alan
    Wu, Hongwei
    FUEL, 2016, 179 : 103 - 107
  • [45] Production and characterisation of bio-oil from biomass fast pyrolysis in a fluidised bed reactor
    Liu Ronghou
    Wang Hua
    Li Tianshu
    Zhang Chunmei
    Wu Lijuan
    INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, 2007, 28 (04) : 347 - 356
  • [46] Characterisation of bio-oil from fast pyrolysis of rice husk in a fluidised bed reactor
    Liu, R. H.
    Shen, C. J.
    Wu, H. J.
    Deng, C. J.
    Liu, S. Y.
    JOURNAL OF THE ENERGY INSTITUTE, 2011, 84 (02) : 73 - 79
  • [47] Effects of hot filtration on yield and quality of bio-oil from fast pyrolysis of chinese fir in fluidized bed reactor
    College of Energy, Xiamen University, Xiamen, China
    Chem. Ind. For. Prod., 3 (13-19):
  • [48] Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor
    Chang, Sheng
    Zhao, Zengli
    Zheng, Anqing
    Li, Xiaoming
    Wang, Xiaobo
    Huang, Zhen
    He, Fang
    Li, Haibin
    BIORESOURCE TECHNOLOGY, 2013, 138 : 321 - 328
  • [49] Upgrading of Bio-oil from Energy Crops via Fast Pyrolysis using Nanocatalyst in a Bubbling Fluidized Bed Reactor
    Chanathaworn, Jutaporn
    Yatongchai, Chokchai
    INTERNATIONAL ENERGY JOURNAL, 2022, 22 (01): : 71 - 80
  • [50] Effect of operating parameters on production of bio-oil from fast pyrolysis of maize stalk in bubbling fluidized bed reactor
    Ali, Najaf
    Saleem, Mahmood
    Shahzad, Khurram
    Hussain, Sadiq
    Chughtai, Arshad
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2016, 18 (03) : 88 - 96