Deep Constrained Dominant Sets for Person Re-Identification

被引:25
|
作者
Alemu, Leulseged Tesfaye [1 ]
Pelillo, Marcello [1 ,2 ]
Shah, Mubarak [3 ]
机构
[1] Ca Foscari Univ Venice, Venice, Italy
[2] ECLT, Venice, Italy
[3] Univ Cent Florida, CRCV, Orlando, FL 32816 USA
关键词
D O I
10.1109/ICCV.2019.00995
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose an end-to-end constrained clustering scheme to tackle the person re-identification (re-id) problem. Deep neural networks (DNN) have recently proven to be effective on person re-identification task. In particular, rather than leveraging solely a probe-gallery similarity, diffusing the similarities among the gallery images in an end-to-end manner has proven to be effective in yielding a robust probe-gallery affinity. However, existing methods do not apply probe image as a constraint, and are prone to noise propagation during the similarity diffusion process. To overcome this, we propose an intriguing scheme which treats person-image retrieval problem as a constrained clustering optimization problem, called deep constrained dominant sets (DCDS). Given a probe and gallery images, we re-formulate person re-id problem as finding a constrained cluster, where the probe image is taken as a constraint (seed) and each cluster corresponds to a set of images corresponding to the same person. By optimizing the constrained clustering in an end-to-end manner, we naturally leverage the contextual knowledge of a set of images corresponding to the given person-images. We further enhance the performance by integrating an auxiliary net alongside DCDS, which employs a multi-scale ResNet. To validate the effectiveness of our method we present experiments on several benchmark datasets and show that the proposed method can outperform state-of-the-art methods.
引用
收藏
页码:9854 / 9863
页数:10
相关论文
共 50 条
  • [21] Person Re-Identification by Deep MAX Pooling Network
    Han, Guang
    Duan, Meng
    Liu, Liu
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [22] Deep Pyramidal Pooling With Attention for Person Re-Identification
    Martinel, Niki
    Foresti, Gian Luca
    Micheloni, Christian
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7306 - 7316
  • [23] Deep Domain Knowledge Distillation for Person Re-identification
    Yan, Junjie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: DEEP LEARNING, PT II, 2019, 11728 : 700 - 713
  • [24] PoolNet deep feature based person re-identification
    Rani, J. Stella Janci
    Augasta, M. Gethsiyal
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (16) : 24967 - 24989
  • [25] Aggregating Deep Pyramidal Representations for Person Re-Identification
    Martinel, Niki
    Foresti, Gian Luca
    Micheloni, Christian
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1544 - 1554
  • [26] Survey on person re-identification based on deep learning
    Wang, Kejun
    Wang, Haolin
    Liu, Meichen
    Xing, Xianglei
    Han, Tian
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2018, 3 (04) : 219 - 227
  • [27] A Survey on Deep Learning Based Person Re-identification
    Luo H.
    Jiang W.
    Fan X.
    Zhang S.-P.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (11): : 2032 - 2049
  • [28] Strict Pyramidal Deep Architectures for Person Re-identification
    Iodice, Sara
    Petrosino, Alfredo
    Ullah, Ihsan
    ADVANCES IN NEURAL NETWORKS: COMPUTATIONAL INTELLIGENCE FOR ICT, 2016, 54 : 179 - 186
  • [29] Deep Hybrid Similarity Learning for Person Re-Identification
    Zhu, Jianqing
    Zeng, Huanqiang
    Liao, Shengcai
    Lei, Zhen
    Cai, Canhui
    Zheng, Lixin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) : 3183 - 3193
  • [30] Deep Learning for Person Re-Identification: A Survey and Outlook
    Ye, Mang
    Shen, Jianbing
    Lin, Gaojie
    Xiang, Tao
    Shao, Ling
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (06) : 2872 - 2893