Vector-Valued Local Approximation Spaces

被引:1
|
作者
Hytonen, Tuomas [1 ]
Merikoski, Jori [1 ,2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68,Gustaf Hallstromin Katu 2b, FIN-00014 Helsinki, Finland
[2] Univ Turku, Dept Math & Stat, Turku 20014, Finland
基金
欧洲研究理事会;
关键词
Local approximation space; Besov space; Embedding; Uniformly convex space; Martingale cotype; Littlewood-Paley theory; SOBOLEV SPACES; BESOV-SPACES;
D O I
10.1007/s00041-018-9598-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for every Banach space Y, the Besov spaces of functions from the n-dimensional Euclidean space to Y agree with suitable local approximation spaces with equivalent norms. In addition, we prove that the Sobolev spaces of type q are continuously embedded in the Besov spaces of the same type if and only if Y has martingale cotype q. We interpret this as an extension of earlier results of Xu (J Reine Angew Math 504:195-226, 1998), and Martinez et al. (Adv Math 203(2):430-475, 2006). These two results combined give the characterization that Y admits an equivalent norm with modulus of convexity of power type q if and only if weakly differentiable functions have good local approximations with polynomials.
引用
收藏
页码:299 / 320
页数:22
相关论文
共 50 条
  • [41] ON SPACES OF VECTOR-VALUED CONTINUOUS-FUNCTIONS
    MENDOZA, J
    BULLETIN DES SCIENCES MATHEMATIQUES, 1983, 107 (02): : 177 - 192
  • [42] Noncommutative vector-valued symmetric Hardy spaces
    Tulenov K.S.
    Russian Mathematics, 2015, 59 (11) : 74 - 79
  • [43] 2-Local standard isometries on vector-valued Lipschitz function spaces
    Jimenez-Vargas, Antonio
    Li, Lei
    Peralta, Antonio M.
    Wang, Liguang
    Wang, Ya-Shu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) : 1287 - 1298
  • [44] Complete latticeability in vector-valued sequence spaces
    Botelho, Geraldo
    Luiz, Jose Lucas P.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) : 523 - 533
  • [45] Numerical index of vector-valued function spaces
    Martín, M
    Payá, R
    STUDIA MATHEMATICA, 2000, 142 (03) : 269 - 280
  • [46] Uniqueness of the topology on spaces of vector-valued functions
    Villena, AR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 445 - 456
  • [47] Hardy spaces of vector-valued Dirichlet series
    Defant, Andreas
    Perez, Antonio
    STUDIA MATHEMATICA, 2018, 243 (01) : 53 - 78
  • [48] Bergman and Bloch spaces of vector-valued functions
    Arregui, JL
    Blasco, O
    MATHEMATISCHE NACHRICHTEN, 2003, 261 : 3 - 22
  • [49] Characterizing Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [50] Preduals of Spaces of Vector-Valued Holomorphic Functions
    Christopher Boyd
    Czechoslovak Mathematical Journal, 2003, 53 : 365 - 376