Characterization of disruption halo currents in the National Spherical Torus Experiment

被引:24
|
作者
Gerhardt, S. P. [1 ]
Menard, J. [1 ]
Sabbagh, S. [2 ]
Scotti, F. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
基金
美国能源部;
关键词
RUNAWAY CURRENT TERMINATION; ASPECT-RATIO; MAJOR DISRUPTIONS; CONTROL-SYSTEM; MHD STABILITY; MITIGATION; ELECTRONS; BETA; PERFORMANCE; EQUILIBRIA;
D O I
10.1088/0029-5515/52/6/063005
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper describes the general characteristics of disruption halo currents in the National Spherical Torus Experiment (Ono et al 2000 Nucl. Fusion 40 557). The commonly observed types of vertical motion and resulting halo current patterns are described, and it is shown that plasma discharges developing between components can facilitate halo current flow. The halo current fractions and toroidal peaking factors at various locations in the device are presented. The maximum product of these two metrics for localized halo current measurements is always significantly less than the worst-case expectations from conventional aspect ratio tokamaks (which are typically written in terms of the total halo current). The halo current fraction and impulse is often largest in cases with the fastest plasma current quenches and highest quench rates. The effective duration of the halo current pulse is comparable to or shorter than the plasma current quench time. The largest halo currents have tended to occur in lower beta and lower elongation plasmas. The sign of the poloidal halo current is reversed when the toroidal field direction is reversed.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Snowflake divertor configuration studies in National Spherical Torus Experiment
    Soukhanovskii, V. A.
    Bell, R. E.
    Diallo, A.
    Gerhardt, S.
    Kaye, S.
    Kolemen, E.
    LeBlanc, B. P.
    McLean, A. G.
    Menard, J. E.
    Paul, S. F.
    Podesta, M.
    Raman, R.
    Rognlien, T. D.
    Roquemore, A. L.
    Ryutov, D. D.
    Scotti, F.
    Umansky, M. V.
    Battaglia, D.
    Bell, M. G.
    Gates, D. A.
    Kaita, R.
    Maingi, R.
    Mueller, D.
    Sabbagh, S. A.
    PHYSICS OF PLASMAS, 2012, 19 (08)
  • [32] Midplane neutral density profiles in the National Spherical Torus Experiment
    Stotler, D. P.
    Scotti, F.
    Bell, R. E.
    Diallo, A.
    LeBlanc, B. P.
    Podesta, M.
    Roquemore, A. L.
    Ross, P. W.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [33] Control system development plan for the National Spherical Torus Experiment
    Gates, DA
    Mueller, D
    Neumeyer, C
    Ferron, JR
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2000, 47 (02) : 222 - 224
  • [34] Edge rotation and temperature diagnostic on the National Spherical Torus Experiment
    Biewer, TM
    Bell, RE
    Feder, R
    Johnson, DW
    Palladino, RW
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (03): : 650 - 654
  • [35] Confinement and local transport in the national spherical torus experiment (NSTX)
    Kaye, S. M.
    Levinton, F. M.
    Stutman, D.
    Tritz, K.
    Yuh, H.
    Bell, M. G.
    Bell, R. E.
    Domier, C. W.
    Gates, D.
    Horton, W.
    Kim, J.
    LeBlanc, B. P.
    Luhmann, N. C., Jr.
    Maingi, R.
    Mazzucato, E.
    Menard, J. E.
    Mikkelsen, D.
    Mueller, D.
    Park, H.
    Rewoldt, G.
    Sabbagh, S. A.
    Smith, D. R.
    Wang, W.
    NUCLEAR FUSION, 2007, 47 (07) : 499 - 509
  • [36] Multipulse Thomson scattering system for the National Spherical Torus Experiment
    Johnson, D
    Bretz, N
    LeBlanc, B
    Palladino, R
    Long, D
    Parsells, R
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (01): : 776 - 779
  • [37] Alfven cascade modes at high β in the National Spherical Torus Experiment
    Crocker, N. A.
    Fredrickson, E. D.
    Gorelenkov, N. N.
    Kramer, G. J.
    Darrow, D. S.
    Heidbrink, W. W.
    Kubota, S.
    Levinton, F. M.
    Yuh, H.
    Menard, J. E.
    LeBlanc, B. P.
    Bell, R. E.
    PHYSICS OF PLASMAS, 2008, 15 (10)
  • [38] Divertor heat flux mitigation in the National Spherical Torus Experiment
    Soukhanovskii, V. A.
    Maingi, R.
    Gates, D. A.
    Menard, J. E.
    Paul, S. F.
    Raman, R.
    Roquemore, A. L.
    Bell, M. G.
    Bell, R. E.
    Boedo, J. A.
    Bush, C. E.
    Kaita, R.
    Kugel, H. W.
    LeBlanc, B. P.
    Mueller, D.
    PHYSICS OF PLASMAS, 2009, 16 (02)
  • [39] Plasmadynamic hypervelocity dust injector for the national spherical torus experiment
    Ticos, Catalin M.
    Wang, Zhehui
    Dorf, Leonid A.
    Wurden, Glen A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [40] Strike point control for the National Spherical Torus Experiment (NSTX)
    Kolemen, E.
    Gates, D. A.
    Rowley, C. W.
    Kasdin, N. J.
    Kallman, J.
    Gerhardt, S.
    Soukhanovskii, V.
    Mueller, D.
    NUCLEAR FUSION, 2010, 50 (10)