Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells

被引:51
|
作者
Da, Yun [1 ]
Xuan, Yimin [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Sch Energy & Power Engn, Nanjing 210016, Peoples R China
来源
OPTICS EXPRESS | 2013年 / 21卷 / 22期
基金
中国国家自然科学基金;
关键词
OPTICAL-ABSORPTION; ENHANCEMENT; DESIGN; LIGHT; BAND;
D O I
10.1364/OE.21.0A1065
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nanostructured light trapping is a promising way to improve the efficiency in thin-film solar cells recently. In this work, both the optical and electrical properties of thin-film solar cells with 1D periodic grating structure are investigated by using photoelectric coupling model. It is found that surface recombination plays a key role in determining the performance of nanostructured thin-film solar cells. Once the recombination effect is considered, the higher optical absorption does not mean the higher conversion efficiency as most existing publications claimed. Both the surface recombination velocity and geometric parameters of structure have great impact on the efficiency of thin-film solar cells. Our simulation results indicate that nanostructured light trapping will not only improve optical absorption but also boost the surface recombination simultaneously. Therefore, we must get the tradeoffs between optical absorption and surface recombination to obtain the maximum conversion efficiency. Our work makes it clear that both the optical absorption and electrical recombination response should be taken into account simultaneously in designing the nanostructured thin-film solar cells. (C) 2013 Optical Society of America
引用
收藏
页码:A1065 / A1077
页数:13
相关论文
共 50 条
  • [21] Cavity-controlled radiative recombination of excitons in thin-film solar cells
    Vuong, Luat T.
    Kozyreff, Gregory
    Betancur, Rafael
    Martorell, Jordi
    APPLIED PHYSICS LETTERS, 2009, 95 (23)
  • [22] Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond
    Sai, Hitoshi
    Matsui, Takuya
    Kumagai, Hideo
    Matsubara, Koji
    APPLIED PHYSICS EXPRESS, 2018, 11 (02)
  • [23] Flexible Thin-Film Tandem Solar Cells With >30% Efficiency
    Kayes, Brendan M.
    Zhang, Ling
    Ding, I-Kang
    Higashi, Gregg S.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (02): : 729 - 733
  • [24] Efficiency limitations of thermally evaporated thin-film SnS solar cells
    Schneikart, A.
    Schimper, H-J
    Klein, A.
    Jaegermann, W.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (30)
  • [25] Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells
    Horng, Ray-Hua
    Lin, Shih-Ting
    Tsai, Yu-Li
    Chu, Mu-Tao
    Liao, Wen-Yih
    Wu, Ming-Hsien
    Lin, Ray-Ming
    Lu, Yuan-Chieh
    IEEE ELECTRON DEVICE LETTERS, 2009, 30 (07) : 724 - 726
  • [26] Ultrafast lasers improve efficiency of CIS thin-film solar cells
    Heise, Gerhard
    Vogt, Helmut
    Heiss, Andreas
    Huber, Heinz P.
    LASER FOCUS WORLD, 2012, 48 (06): : 39 - 42
  • [27] Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency
    Wang, Wei
    Winkler, Mark T.
    Gunawan, Oki
    Gokmen, Tayfun
    Todorov, Teodor K.
    Zhu, Yu
    Mitzi, David B.
    ADVANCED ENERGY MATERIALS, 2014, 4 (07)
  • [28] PROGRESS ON HIGH-EFFICIENCY THIN-FILM SOLAR-CELLS
    MOREL, DL
    SOLAR CELLS, 1988, 24 (1-2): : 157 - 164
  • [29] HIGH-EFFICIENCY, THIN-FILM GAAS SOLAR-CELLS
    ZWERDLING, S
    WANG, KL
    YEH, YCM
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1983, 105 (03): : 237 - 242
  • [30] High-efficiency polycrystalline CdTe thin-film solar cells
    Wu, XZ
    SOLAR ENERGY, 2004, 77 (06) : 803 - 814