New results of fuzzy implications satisfying I(x, I(y, z)) = I(I(x, y), I(x, z))

被引:3
|
作者
Peng, Zuming [1 ]
Peng, Cong [2 ]
机构
[1] Yangtze Normal Univ, Coll Math & Stat, Chongqing 408100, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
关键词
Fuzzy implications; (S; N)-implications; (U; Generalized Frege's Law; Fuzzy negation; Fixed point; IMPLICATION OPERATORS; SYSTEM; FAMILY;
D O I
10.1016/j.ijar.2020.03.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cruz et al. (2018) [10] investigated the fuzzy generalization of Frege's Law: x -> (y -> z) (x -> y) -> (x -> z), i.e., I(x, I(y, z)) = I(I(x, y), I(x, z)), which is called generalized Frege's Law. They showed conditions such that the generalized Frege's Law holds for (S, N)-implications (R-, QL-, D-, (T, N)-, H-, respectively). In this paper, firstly, a new necessary condition such that the generalized Frege's Law holds is given: N-I, the natural negation of I, is not continuous or has no fixed point. Based on this result, some propositions in [10] with contradictory assumptions are pointed out, and a correction is given. Secondly, new solutions of the equation I (x, I(y, z)) = I (I(x, y), I(x, z)) in (S, N)-implications are given. Finally, the necessary and sufficient conditions under which the generalized Frege's Law holds for the (U, N)-implications (f-,g-, T-Power based implications, respectively) are studied. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 102
页数:21
相关论文
共 50 条
  • [41] NQR STUDY OF TETRAMETRIC ET3YCU(I)X(Y=P, AS, X=CL, BR, I) COMPLEXES
    VALIGURA, D
    VERDONCK, L
    VANDERKELEN, GP
    BULLETIN DES SOCIETES CHIMIQUES BELGES, 1980, 89 (10): : 831 - 836
  • [42] Becoming a tree when I will be dead? Why not! Generation X, Y and Z, and innovative green death practices
    Nosi, Costanza
    D'Agostino, Antonella
    Piccioni, Niccolo
    Bartoli, Chiara
    JOURNAL OF RETAILING AND CONSUMER SERVICES, 2023, 75
  • [43] THE NUMBER OF LIMIT CYCLES OF THE DY/DX=Q(X,Y,Z)/P(X,Y,Z), DZ/DX=R(X,Y,Z)/P(X,Y,Z), SYSTEM WHERE P(X,Y,Z),Q(X,Y,Z),R(X,Y,Z) ARE 2ND DEGREE POLYNOMIALS
    KHUDAIVERENOV, MG
    DOKLADY AKADEMII NAUK SSSR, 1959, 128 (05): : 899 - 902
  • [44] Diagnosis of a Chinese man with 45,X/46,X,i(Y)(q10)/47,X,i(Y) (q10) x2 mosaic Turner syndrome
    Sha, Yan-Wei
    Ding, Lu
    Ji, Zhi-Yong
    Ge, Yun-Sheng
    Kong, Hui
    Zhang, Qing
    Zhou, Yu-Lin
    Li, Ping
    ASIAN JOURNAL OF ANDROLOGY, 2018, 20 (02) : 205 - 207
  • [45] TURNER SYNDROME WITH 45,X/46,X,I(Xq)/47,X,I(Xq),I(Xq) KARYOTYPE
    Gorukmez, O.
    Sag, S. Ozemri
    Gulten, T.
    Gorukmez, O.
    Ture, M.
    Yakut, T.
    GENETIC COUNSELING, 2015, 26 (02): : 267 - 269
  • [46] X AS THE Y OF Z
    STENT, GS
    NATURE, 1979, 282 (5741) : 776 - 776
  • [47] The least positive integer represented by Sigma(n)(i=1) x(i)/d(i) (1<=x(i)<=d(i)-1)
    Sun, Q
    CHINESE SCIENCE BULLETIN, 1996, 41 (06): : 447 - 450
  • [48] A CASE OF TURNERS SYNDROME WITH 45, X/46, X, I DIC (Y) KARYOTYPE
    ZAMBONI, G
    BERNARDI, F
    DESABATA, D
    TATO, L
    ZUFFARDI, O
    RIVISTA ITALIANA DI PEDIATRIA-ITALIAN JOURNAL OF PEDIATRICS, 1983, 9 (06): : 609 - 612
  • [49] H-Y TYPING IN A 45, X/46,X I(XQ) FEMALE
    ALLER, V
    ABRISQUETA, JA
    ROJO, JM
    CLINICAL GENETICS, 1983, 23 (03) : 206 - 207
  • [50] 高斯环上的丢番图方程x~2+iy~2=1,x,y∈Z[i]
    罗英勇
    辛欣
    科技信息, 2009, (34) : 356 - 356