On approximation of local conservation laws by nonlocal conservation laws

被引:37
|
作者
Keimer, Alexander [1 ]
Pflug, Lukas [2 ]
机构
[1] Univ Calif Berkeley, ITS, Berkeley, CA 94720 USA
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Math, Chair Appl Math 2, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Nonlocal balance laws; Convergence of the nonlocal model to corresponding local model; Entropy solution; Traffic flow modelling; LWR PDE; TRAFFIC FLOW MODEL; BALANCE LAWS; UNIQUENESS; EXISTENCE; SYSTEM; REGULARITY; WAVES;
D O I
10.1016/j.jmaa.2019.03.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for monotone initial datum the solution of nonlocal conservation laws converges to the entropy solution of the corresponding local conservation laws when the nonlocal reach tends to zero. This particularly covers the principle cases of conservation laws: shocks and rarefactions. The considered problem is addressed by studying the Entropy of the nonlocal conservation laws in the limit and by exploiting the semi-explicit solution formula developed in [30]. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1927 / 1955
页数:29
相关论文
共 50 条
  • [31] A numerical scheme for doubly nonlocal conservation laws
    Abreu, E.
    Valencia-Guevara, J. C.
    Huacasi-Machaca, M.
    Perez, J.
    CALCOLO, 2024, 61 (04)
  • [32] Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations
    Anco, SC
    Bluman, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (07) : 3508 - 3532
  • [33] LOCAL CONSERVATION LAWS IN A NONLINEAR ELECTRODYNAMICS
    Batsula, O. I.
    UKRAINIAN JOURNAL OF PHYSICS, 2011, 56 (05): : 416 - 419
  • [34] Microcanonical Particlization with Local Conservation Laws
    Oliinychenko, Dmytro
    Koch, Volker
    PHYSICAL REVIEW LETTERS, 2019, 123 (18)
  • [35] Local variational problems and conservation laws
    Ferraris, Marco
    Palese, Marcella
    Winterroth, Ekkehart
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S80 - S85
  • [36] LOCAL SYMMETRIES AND CONSERVATION-LAWS
    VINOGRADOV, AM
    ACTA APPLICANDAE MATHEMATICAE, 1984, 2 (01) : 21 - 78
  • [37] CONSTRUCTION OF LOCAL AND NONLOCAL CONSERVATION-LAWS FOR NONLINEAR FIELD-EQUATIONS
    VLADIMIROV, VS
    VOLOVICH, IV
    ANNALEN DER PHYSIK, 1990, 47 (2-3) : 228 - 238
  • [38] Scalar conservation laws with mixed local and nonlocal diffusion-dispersion terms
    Rohde, C
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) : 103 - 129
  • [39] Oleinik-type estimates for nonlocal conservation laws and applications to the nonlocal-to-local limit
    Coclite, Giuseppe Maria
    Colombo, Maria
    Crippa, Gianluca
    De Nitti, Nicola
    Keimer, Alexander
    Marconi, Elio
    Pflug, Lukas
    Spinolo, Laura V.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2024, 21 (03) : 681 - 705
  • [40] Analysis and Approximation of Conservation Laws with Source Terms
    Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
    不详
    不详
    不详
    SIAM J Numer Anal, 5 (1980-2007):