A Simple Modification Method to Obtain Anisotropic and Porous 3D Microfibrillar Scaffolds for Surgical and Biomedical Applications

被引:24
|
作者
Hosseini, Vahid [1 ]
Evrova, Olivera [1 ,2 ]
Hoerstrup, Simon P. [3 ,4 ,5 ]
Vogel, Viola [1 ]
机构
[1] ETH, Dept Hlth Sci & Technol, Inst Translat Med, Lab Appl Mechanobiol, CH-8093 Zurich, Switzerland
[2] Univ Hosp Zurich, Div Plast Surg & Hand Surg, CH-8091 Zurich, Switzerland
[3] Univ Zurich, Inst Regenerat Med IREM, CH-8091 Zurich, Switzerland
[4] Univ Zurich, Wyss Translat Ctr Zurich, CH-8091 Zurich, Switzerland
[5] ETH, CH-8091 Zurich, Switzerland
关键词
3D; anisotropic; reconstructive surgery; scaffolds; tissue engineering; SKELETAL-MUSCLE TISSUE; ENGINEERED HEART-VALVES; SELF-ORGANIZATION; CELL ALIGNMENT; STEM-CELLS; COLLAGEN; FIBERS; FIBRONECTIN; REPAIR; IMPLANTATION;
D O I
10.1002/smll.201702650
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In native tissues, cellular organization is predominantly anisotropic. Yet, it remains a challenge to engineer anisotropic scaffolds that promote anisotropic cellular organization at macroscopic length scales. To overcome this challenge, an innovative, cheap and easy method to align clinically approved non-woven surgical microfibrillar scaffolds is presented. The method involves a three-step process of coating, unidirectional stretching of scaffolds after heating them above glass transition temperature, and cooling back to room temperature. Briefly, a polymer coating is applied to a non-woven mesh that results in a partial welding of randomly oriented microfibers at their intersection points. The coated scaffold is then heated above the glass transition temperature of the coating and the scaffold polymer. Subsequently, the coated scaffold is stretched to produce aligned and three dimentional (3D) porous fibrillar scaffolds. In a proof of concept study, a polyglycolic acid (PGA) micro-fibrillar scaffold was coated with poly(4-hydroxybutirate) (P4HB) acid and subsequently aligned. Fibroblasts were cultured in vitro within the scaffold and results showed an increase in cellular alignment along the direction of the PGA fibers. This method can be scaled up easily for industrial production of polymeric meshes or directly applied to small pieces of scaffolds at the point of care.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] 3D ink-printed, sintered porous silicon scaffolds for battery applications
    Moser, S.
    Kenel, C.
    Wehner, L. A.
    Spolenak, R.
    Dunand, D. C.
    JOURNAL OF POWER SOURCES, 2021, 507
  • [32] A Simple and Effective Modeling Method for 3D Porous Irregular Structures
    Ren, Lijing
    Zhang, Denghui
    PROCESSES, 2022, 10 (03)
  • [33] Fabrication of Novel 3D Nanofiber Scaffolds with Anisotropic Property and Regular Pores and Their Potential Applications
    Xie, Jingwei
    Ma, Bing
    Michael, Praveesuda Lorwattanapongsa
    ADVANCED HEALTHCARE MATERIALS, 2012, 1 (05) : 674 - 678
  • [34] Reinforced 3D printing for biomedical applications
    Winkless, Laurie
    MATERIALS TODAY, 2015, 18 (01) : 6 - 7
  • [35] Biomedical Applications of Metal 3D Printing
    Velasquez-Garcia, Luis Fernando
    Kornbluth, Yosef
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 23, 2021, 2021, 23 : 307 - 338
  • [36] Biomedical Applications of Metal 3D Printing
    Velásquez-García, Luis Fernando
    Kornbluth, Yosef
    Annual Review of Biomedical Engineering, 2021, 23 : 307 - 338
  • [37] 3D Bioprinting: Printing To Biomedical Applications
    Deodhar, Neha
    Jha, Rakesh Kumar
    Jha, Roshan Kumar
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2021, 14 (06): : 293 - 297
  • [38] A robust, autonomous, volumetric quality assurance method for 3D printed porous scaffolds
    Nicholas Zhang
    Srujan Singh
    Stephen Liu
    Wojciech Zbijewski
    Warren L. Grayson
    3D Printing in Medicine, 8
  • [39] A robust, autonomous, volumetric quality assurance method for 3D printed porous scaffolds
    Zhang, Nicholas
    Singh, Srujan
    Liu, Stephen
    Zbijewski, Wojciech
    Grayson, Warren L.
    3D PRINTING IN MEDICINE, 2022, 8 (01)
  • [40] Magnetic nanoparticles in 3D-printed scaffolds for biomedical applications
    Marovic, Nina
    Ban, Irena
    Maver, Uros
    Maver, Tina
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)