NONSEPARABLE DYNAMIC NEAREST NEIGHBOR GAUSSIAN PROCESS MODELS FOR LARGE SPATIO-TEMPORAL DATA WITH AN APPLICATION TO PARTICULATE MATTER ANALYSIS

被引:81
|
作者
Datta, Abhirup [1 ]
Banerjee, Sudipto [2 ]
Finley, Andrew O. [3 ,4 ]
Hamm, Nicholas A. S. [5 ]
Schaap, Martijn [6 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
[3] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA
[5] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AE Enschede, Netherlands
[6] TNO, Dept Climate Air & Sustainabil, NL-3508 TA Utrecht, Netherlands
来源
ANNALS OF APPLIED STATISTICS | 2016年 / 10卷 / 03期
基金
美国国家科学基金会;
关键词
Nonseparable spatio-temporal models; scalable Gaussian process; nearest neighbors; Bayesian inference; Markov chain Monte Carlo; environmental pollutants; AIR-POLLUTION; COVARIANCE FUNCTIONS; SPATIAL MODELS; LOTOS-EUROS; SPACE; QUALITY; IDENTIFICATION; INTERPOLATION; PREDICTION;
D O I
10.1214/16-AOAS931
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Particulate matter (PM) is a class of malicious environmental pollutants known to be detrimental to human health. Regulatory efforts aimed at curbing PM levels in different countries often require high resolution space-time maps that can identify red-flag regions exceeding statutory concentration limits. Continuous spatio-temporal Gaussian Process (GP) models can deliver maps depicting predicted PM levels and quantify predictive uncertainty. However, GP-based approaches are usually thwarted by computational challenges posed by large datasets. We construct a novel class of scalable Dynamic Nearest Neighbor Gaussian Process (DNNGP) models that can provide a sparse approximation to any spatio-temporal GP (e.g., with nonseparable covariance structures). The DNNGP we develop here can be used as a sparsity-inducing prior for spatio-temporal random effects in any Bayesian hierarchical model to deliver full posterior inference. Storage and memory requirements for a DNNGP model are linear in the size of the dataset, thereby delivering massive scalability without sacrificing inferential richness. Extensive numerical studies reveal that the DNNGP provides substantially superior approximations to the underlying process than low-rank approximations. Finally, we use the DNNGP to analyze a massive air quality dataset to substantially improve predictions of PM levels across Europe in conjunction with the LOTOS-EUROS chemistry transport models (CTMs).
引用
收藏
页码:1286 / 1316
页数:31
相关论文
共 50 条
  • [41] Data-driven spatio-temporal dynamic brain connectivity analysis using fALFF: Application to sensorimotor task data
    Hossain, Khondoker Murad
    Bhinge, Suchita
    Long, Qunfang
    Calhoun, Vince D.
    Adali, Tulay
    2022 56TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2022, : 200 - 205
  • [42] Spatio-temporal learning and explaining for dynamic functional connectivity analysis: Application to depression
    Hu, Jinlong
    Luo, Jianmiao
    Xu, Ziyun
    Liao, Bin
    Dong, Shoubin
    Peng, Bo
    Hou, Gangqiang
    JOURNAL OF AFFECTIVE DISORDERS, 2024, 364 : 266 - 273
  • [43] POINT PROCESS MODELS FOR SPATIO-TEMPORAL DISTANCE SAMPLING DATA FROM A LARGE-SCALE SURVEY OF BLUE WHALES
    Yuan, Yuan
    Bachl, Fabian E.
    Lindgren, Finn
    Borchers, David L.
    Illian, Janine B.
    Buckland, Stephen T.
    Rue, Havard
    Gerrodette, Tim
    ANNALS OF APPLIED STATISTICS, 2017, 11 (04): : 2270 - 2297
  • [44] SPATIO-TEMPORAL ANALYSIS OF PARTICULATE MATTER BASED ON GROUND AND SATELLITE DERIVED OBSERVATIONS: UNITED ARAB EMIRATES
    Khalifa, Inas
    Al-Ruzouq, Rami
    Shanableh, Abdallah
    Hamad, Khaled
    Al-Ani, Sama
    Gibril, Mohamed Barakat A.
    Khalil, Mohamad Ali
    2022 IEEE MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2022, : 41 - 45
  • [45] Partial-Likelihood Analysis of Spatio-Temporal Point-Process Data
    Diggle, Peter J.
    Kaimi, Irene
    Abellana, Rosa
    BIOMETRICS, 2010, 66 (02) : 347 - 354
  • [46] Second-order analysis of inhomogeneous spatio-temporal point process data
    Gabriel, Edith
    Diggle, Peter J.
    STATISTICA NEERLANDICA, 2009, 63 (01) : 43 - 51
  • [47] A Generalised Spatio-Temporal Registration Framework for Dynamic PET Data: Application to Neuroreceptor Imaging
    Jiao, Jieqing
    Schnabel, Julia A.
    Gunn, Roger N.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2013), PT I, 2013, 8149 : 211 - 218
  • [48] Learning Large-Scale Dynamic Discrete Choice Models of Spatio-Temporal Preferences with Application to Migratory Pastoralism in East Africa
    Ermon, Stefano
    Xue, Yexiang
    Toth, Russell
    Dilkina, Bistra
    Bernstein, Richard
    Damoulas, Theodoros
    Clark, Patrick
    DeGloria, Steve
    Mude, Andrew
    Barrett, Christopher
    Gomes, Carla P.
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 644 - 650
  • [49] A software framework for construction of process-based stochastic spatio-temporal models and data assimilation
    Karssenberg, Derek
    Schmitz, Oliver
    Salamon, Peter
    de Jong, Kor
    Bierkens, Marc F. P.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (04) : 489 - 502
  • [50] LEST: Large language models and spatio-temporal data analysis for enhanced Sino-US exchange rate forecasting
    Han, Di
    Guo, Wei
    Chen, Han
    Wang, Bocheng
    Guo, Zikun
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2024, 96