A derivative-free algorithm for linearly constrained finite minimax problems

被引:33
|
作者
Liuzzi, G
Lucidi, S
Sciandrone, M
机构
[1] Univ Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, Italy
[2] CNR, Ist Anal Sistemi & Informat, I-00185 Rome, Italy
关键词
derivative-free optimization; linearly constrained finite minimax problems; nonsmooth optimization;
D O I
10.1137/040615821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new derivative-free algorithm for linearly constrained finite minimax problems. Due to the nonsmoothness of this class of problems, standard derivative-free algorithms can locate only points which satisfy weak necessary optimality conditions. In this work we define a new derivative-free algorithm which is globally convergent toward standard stationary points of the finite minimax problem. To this end, we convert the original problem into a smooth one by using a smoothing technique based on the exponential penalty function of Kort and Bertsekas. This technique depends on a smoothing parameter which controls the approximation to the finite minimax problem. The proposed method is based on a sampling of the smooth function along a suitable search direction and on a particular updating rule for the smoothing parameter that depends on the sampling stepsize. Numerical results on a set of standard minimax test problems are reported.
引用
收藏
页码:1054 / 1075
页数:22
相关论文
共 50 条
  • [41] A Derivative-Free Algorithm for Constrained Global Optimization Based on Exact Penalty Functions
    Gianni Di Pillo
    Stefano Lucidi
    Francesco Rinaldi
    Journal of Optimization Theory and Applications, 2015, 164 : 862 - 882
  • [42] Constrained derivative-free optimization on thin domains
    Martinez, J. M.
    Sobral, F. N. C.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (03) : 1217 - 1232
  • [43] A Derivative-Free Multivariate Spectral Projection Algorithm for Constrained NonLinear Monotone Equations
    Mohammad H.
    Waziri M.Y.
    Abubakar A.B.
    International Journal of Applied and Computational Mathematics, 2021, 7 (2)
  • [44] A progressive barrier derivative-free trust-region algorithm for constrained optimization
    Audet, Charles
    Conn, Andrew R.
    Le Digabel, Sebastien
    Peyrega, Mathilde
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (02) : 307 - 329
  • [45] Constrained derivative-free optimization on thin domains
    J. M. Martínez
    F. N. C. Sobral
    Journal of Global Optimization, 2013, 56 : 1217 - 1232
  • [46] An efficient derivative-free algorithm for bound constrained mixed-integer optimization
    Yang, Shanxue
    Liu, Hongwei
    Pan, Chen
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 11 - 20
  • [47] Reducing the number of function evaluations in derivative-free algorithm for bound constrained optimization
    Yang, Shanxue
    Yang, Zuqiao
    Fu, Yiping
    Liu, Hongwei
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (06) : 1779 - 1788
  • [48] An interior-point derivative-free algorithm for nonlinear complementarity problems
    Wang, Jueyu
    Gu, Chao
    Zhu, Detong
    NUMERICAL ALGORITHMS, 2024,
  • [49] A derivative-free algorithm for unconstrained optimization
    Peng Y.
    Liu Z.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (4) : 491 - 498
  • [50] Derivative-free superiorization: principle and algorithm
    Censor, Yair
    Garduno, Edgar
    Helou, Elias S.
    Herman, Gabor T.
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 227 - 248