Comparative Study of Latent Structure Modeling Approaches with Its Application to Prediction Dioxin Emission Concentration
被引:0
|
作者:
Tang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China
Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China
Tang, Jian
[1
,2
]
Qiao, Junfei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China
Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China
Qiao, Junfei
[1
,2
]
Xu, Zhe
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China
Xu, Zhe
[1
]
Yu, Wen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China
Yu, Wen
[2
]
机构:
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China
[2] Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
Dioxin (DXN) is a kind of pollutant commonly discharged during municipal solid waste incineration (MSWI). In practical industrial processes, the concentration of DXN emission is measured by using offline analysis, but this method is constrained by long time lag and high cost. This study aims to develop soft measuring model for DXN emission concentration by using easy-to-measure MSWI process variables with the latent structure algorithm. Three latent structure algorithms, namely, linear projection to latent structure (PLS), nonlinear kernel PLS (KPLS), and a new improved general algorithm-based selective ensemble KPLS (IGASENKPLS), are applied to build the DXN estimation model. Results show that the latent structure algorithm can successfully generate DXN models with good prediction performance. Nonlinear KPLS can extract more variations from the dataset than linear PLS, but IGASENKPLS can enhance prediction performance even further. The proposed approach demonstrates the feasibility of using latent structure algorithm to model DXN emission concentration by using collinear, nonlinear, and small-size sampling data.
机构:
Soochow Univ, Soochow Inst Energy & Mat Innovat SIEMIS, Coll Energy, Suzhou 215006, Peoples R China
Soochow Univ, Jiangsu Prov Key Lab Adv Carbon Mat & Wearable Ene, Suzhou 215006, Peoples R ChinaSoochow Univ, Soochow Inst Energy & Mat Innovat SIEMIS, Coll Energy, Suzhou 215006, Peoples R China
Yang, Fan
Cheng, Guanjian
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Soochow Inst Energy & Mat Innovat SIEMIS, Coll Energy, Suzhou 215006, Peoples R China
Soochow Univ, Jiangsu Prov Key Lab Adv Carbon Mat & Wearable Ene, Suzhou 215006, Peoples R ChinaSoochow Univ, Soochow Inst Energy & Mat Innovat SIEMIS, Coll Energy, Suzhou 215006, Peoples R China
Cheng, Guanjian
Yin, Wan-Jian
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Soochow Inst Energy & Mat Innovat SIEMIS, Coll Energy, Suzhou 215006, Peoples R China
Soochow Univ, Jiangsu Prov Key Lab Adv Carbon Mat & Wearable Ene, Suzhou 215006, Peoples R China
Shanghai Qi Zhi Inst, Shanghai 200232, Peoples R ChinaSoochow Univ, Soochow Inst Energy & Mat Innovat SIEMIS, Coll Energy, Suzhou 215006, Peoples R China
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Xu, Chaofan
Tang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Tang, Jian
Xia, Heng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Xia, Heng
Yu, Wen
论文数: 0引用数: 0
h-index: 0
机构:
Natl Polytech Inst, CINVESTAV IPN, Dept Control Automat, Mexico City 07360, DF, MexicoBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Yu, Wen
Qiao, Junfei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Xu, Chaofan
Tang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Tang, Jian
Xia, Heng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Xia, Heng
Yu, Wen
论文数: 0引用数: 0
h-index: 0
机构:
IPN, Natl Polytech Inst, Dept Control Automat, CINVESTAV, Mexico City 07360, DF, MexicoBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Yu, Wen
Qiao, Junfei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China