Temperature uniformity in the CERN CLOUD chamber

被引:13
|
作者
Dias, Antonio [1 ]
Ehrhart, Sebastian [1 ,3 ]
Vogel, Alexander [1 ,4 ]
Williamson, Christina [2 ,5 ,6 ]
Almeida, Joao [1 ,2 ]
Kirkby, Jasper [1 ,2 ]
Mathot, Serge [1 ]
Mumford, Samuel [1 ,7 ]
Onnela, Antti [1 ]
机构
[1] CERN, CH-1211 Geneva, Switzerland
[2] Goethe Univ Frankfurt, Inst Atmospher & Environm Sci, D-60438 Frankfurt, Germany
[3] Max Planck Inst Chem, Atmospher Chem Dept, Hahn Meitner Weg 1, D-55128 Mainz, Germany
[4] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[5] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA
[6] Univ Colorado, CIRES, Boulder, CO 80309 USA
[7] Stanford Univ, Kapitulink Lab, 476 Lomita Mall, Stanford, CA 94305 USA
关键词
SULFURIC-ACID; NUCLEATION; PARTICLES;
D O I
10.5194/amt-10-5075-2017
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (European Council for Nuclear Research) investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m(3) CLOUD chamber is equipped with several arrays ("strings") of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min(-1), respectively. During steady-state calibration runs between -70 and +20 degrees C, the air temperature uniformity is better than +/-0.06 degrees C in the radial direction and +/-0.1 degrees C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber). The temperature stability is +/-0.04 degrees C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 degrees C warmer than the enclosed air. This results in temperature differences of +/-1.5 degrees C in the vertical direction and +/-1 degrees C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.
引用
收藏
页码:5075 / 5088
页数:14
相关论文
共 50 条
  • [41] Aerosol nucleation and growth in the CLOUD experiment at CERN
    Curtius, Joachim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [42] Development of the gas system for the CLOUD experiment at CERN
    Guida, R.
    Carrie, P.
    De Menezes, L.
    Duplissy, J.
    Fayet, F.
    Haider, S.
    Kirkby, J.
    Mathot, S.
    Minginette, P.
    Onnela, A.
    Rochez, J.
    Thomas, G.
    Wasem, A.
    Wilhelmsson, M.
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [43] Chamber simulations of cloud chemistry:: The AIDA chamber
    Wagner, Robert
    Bunz, Helmut
    Linke, Claudia
    Moehler, Ottmar
    Naumann, Karl-Heinz
    Saathoff, Harald
    Schnaiter, Martin
    Schurath, Ulrich
    ENVIRONMENTAL SIMULATION CHAMBERS: APPLICATION TO ATMOSPHERIC CHEMICAL PROCESSES, 2006, 62 : 67 - +
  • [44] Antiproton cloud compression in the ALPHA apparatus at CERN
    Gutierrez, A.
    Ashkezari, M. D.
    Baquero-Ruiz, M.
    Bertsche, W.
    Burrows, C.
    Butler, E.
    Capra, A.
    Cesar, C. L.
    Charlton, M.
    Dunlop, R.
    Eriksson, S.
    Evetts, N.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Isaac, C. A.
    Jonsell, S.
    Kurchaninov, L.
    Little, A.
    Madsen, N.
    McKenna, J. T. K.
    Menary, S.
    Napoli, S. C.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sacramento, R. L.
    Sarid, E.
    Silveira, D. M.
    So, C.
    Stracka, S.
    Tarlton, J.
    Tharp, T. D.
    Thompson, R. I.
    Tooley, P.
    Turner, M.
    van der Werf, D. P.
    Wurtele, J. S.
    Zhmoginov, A. I.
    HYPERFINE INTERACTIONS, 2015, 235 (1-3): : 21 - 28
  • [45] Antiproton cloud compression in the ALPHA apparatus at CERN
    A. Gutierrez
    M. D. Ashkezari
    M. Baquero-Ruiz
    W. Bertsche
    C. Burrows
    E. Butler
    A. Capra
    C. L. Cesar
    M. Charlton
    R. Dunlop
    S. Eriksson
    N. Evetts
    J. Fajans
    T. Friesen
    M. C. Fujiwara
    D. R. Gill
    J. S. Hangst
    W. N. Hardy
    M. E. Hayden
    C. A. Isaac
    S. Jonsell
    L. Kurchaninov
    A. Little
    N. Madsen
    J. T. K. McKenna
    S. Menary
    S. C. Napoli
    P. Nolan
    K. Olchanski
    A. Olin
    P. Pusa
    C. Ø. Rasmussen
    F. Robicheaux
    R. L. Sacramento
    E. Sarid
    D. M. Silveira
    C. So
    S. Stracka
    J. Tarlton
    T. D. Tharp
    R. I. Thompson
    P. Tooley
    M. Turner
    D. P. van der Werf
    J. S. Wurtele
    A. I. Zhmoginov
    Hyperfine Interactions, 2015, 235 : 21 - 28
  • [46] Results from the CERN pilot CLOUD experiment
    Duplissy, J.
    Enghoff, M. B.
    Aplin, K. L.
    Arnold, F.
    Aufmhoff, H.
    Avngaard, M.
    Baltensperger, U.
    Bondo, T.
    Bingham, R.
    Carslaw, K.
    Curtius, J.
    David, A.
    Fastrup, B.
    Gagne, S.
    Hahn, F.
    Harrison, R. G.
    Kellett, B.
    Kirkby, J.
    Kulmala, M.
    Laakso, L.
    Laaksonen, A.
    Lillestol, E.
    Lockwood, M.
    Makela, J.
    Makhmutov, V.
    Marsh, N. D.
    Nieminen, T.
    Onnela, A.
    Pedersen, E.
    Pedersen, J. O. P.
    Polny, J.
    Reichl, U.
    Seinfeld, J. H.
    Sipila, M.
    Stozhkov, Y.
    Stratmann, F.
    Svensmark, H.
    Svensmark, J.
    Veenhof, R.
    Verheggen, B.
    Viisanen, Y.
    Wagner, P. E.
    Wehrle, G.
    Weingartner, E.
    Wex, H.
    Wilhelmsson, M.
    Winkler, P. M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (04) : 1635 - 1647
  • [47] Atmospheric Nucleation and Growth in the CLOUD Experiment at CERN
    Kirkby, Jasper
    NUCLEATION AND ATMOSPHERIC AEROSOLS, 2013, 1527 : 278 - 286
  • [48] RAPID-DETERMINATION OF CORROSION CHAMBER UNIFORMITY
    SCHUBERT, R
    NEUBURGER, GG
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) : 1048 - 1051
  • [49] Numerical Simulation of Field Uniformity of Reverberation Chamber
    Tan Hui
    Fang Chonghua
    Huang Mingliang
    Tao Li
    PROCEEDINGS OF THE 2016 11TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY (ISAPE), 2016, : 481 - 484
  • [50] Analysis of the Uniformity of Light in a Plant Growth Chamber
    Xu, Yong
    Wang, Hanbin
    Nsengiyumva, Walter
    2018 4TH INTERNATIONAL CONFERENCE ON UNIVERSAL VILLAGE (IEEE UV 2018): HUMANKIND IN HARMONY WITH NATURE THROUGH WISE USE OF TECHNOLOGY, 2018,