Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO

被引:38
|
作者
Mitra, Chandrima [1 ]
Krogel, Jaron T. [1 ]
Santana, Juan A. [1 ]
Reboredo, Fernando A. [1 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 143卷 / 16期
关键词
TRANSITION-METAL OXIDES; NARROW ENERGY-BANDS; ELECTRONIC-STRUCTURE; POINT-DEFECTS; SPECTRA;
D O I
10.1063/1.4934262
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Understanding strongly correlated many-body systems with quantum Monte Carlo simulations
    Lavalle, C
    Rigol, M
    Muramatsu, A
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (10): : 1957 - 1968
  • [2] TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo
    Nakano, Kousuke
    Attaccalite, Claudio
    Barborini, Matteo
    Capriotti, Luca
    Casula, Michele
    Coccia, Emanuele
    Dagrada, Mario
    Genovese, Claudio
    Luo, Ye
    Mazzola, Guglielmo
    Zen, Andrea
    Sorella, Sandro
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (20):
  • [3] Many-body optimization using an ab initio Monte Carlo method
    Haubein, NC
    McMillan, SA
    Broadbelt, LJ
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (01): : 68 - 74
  • [4] The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations
    Sellier, J. M.
    Dimov, I.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 273 : 589 - 597
  • [5] Diffusion Monte Carlo: A powerful tool for studying quantum many-body systems
    Pang, Tao
    AMERICAN JOURNAL OF PHYSICS, 2014, 82 (10) : 980 - 988
  • [6] A fourth order diffusion Monte Carlo algorithm for solving quantum many-body problems
    Forbert, HA
    Chin, SA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1752 - 1755
  • [7] A QUANTUM MONTE-CARLO APPROACH TO MANY-BODY PHYSICS
    VONDERLINDEN, W
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 220 (2-3): : 53 - 162
  • [8] MONTE-CARLO METHODS IN QUANTUM MANY-BODY PROBLEMS
    KALOS, MH
    NUCLEAR PHYSICS A, 1979, 328 (1-2) : 153 - 168
  • [9] Ab initio electronic density in solids by many-body plane-wave auxiliary-field quantum Monte Carlo calculations
    Chen, Siyuan
    Motta, Mario
    Ma, Fengjie
    Zhang, Shiwei
    PHYSICAL REVIEW B, 2021, 103 (07)
  • [10] Fourth-order diffusion Monte Carlo algorithms for solving quantum many-body problems
    Forbert, HA
    Chin, SA
    PHYSICAL REVIEW B, 2001, 63 (14)