Unified approach for multiple sclerosis lesion segmentation on brain MRI

被引:100
|
作者
Sajja, BR
Datta, S
He, RJ
Mehta, M
Gupta, RK
Wolinsky, JS
Narayana, PA
机构
[1] Univ Texas, Sch Med, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA
[2] Sanjay Gandhi Postgrad Inst Med Sci, Dept Radiodiagnosis, Lucknow 226014, Uttar Pradesh, India
[3] Univ Texas, Sch Med, Dept Neurol, Houston, TX 77030 USA
关键词
segmentation; feature classification; multiple sclerosis; expectation maximization; hidden Markov random field; MRI;
D O I
10.1007/s10439-005-9009-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The presence of large number of false lesion classification on segmented brain MR images is a major problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order to minimize the false lesion classifications, a strategy that combines parametric and nonparametric techniques is developed and implemented. This approach uses the information from the proton density (PD)- and T2-weighted and fluid attenuation inversion recovery (FLAIR) images. This strategy involves CSF and lesion classification using the Parzen window classifier. Image processing, morphological operations, and ratio maps of PD- and T2-weighted images are used for minimizing false positives. Contextual information is exploited for minimizing the false negative lesion classifications using hidden Markov random field-expectation maximization (HMRF-EM) algorithm. Lesions are delineated using fuzzy connectivity. The performance of this algorithm is quantitatively evaluated on 23 MS patients. Similarity index, percentages of over, under, and correct estimations of lesions are computed by spatially comparing the results of present procedure with expert manual segmentation. The automated processing scheme detected 80% of the manually segmented lesions in the case of low lesion load and 93% of the lesions in those cases with high lesion load.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 50 条
  • [21] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Ali Alijamaat
    Alireza NikravanShalmani
    Peyman Bayat
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 1459 - 1467
  • [22] Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI
    Meier, Dominik S.
    Guttmann, Charles R. G.
    Tummala, Subhash
    Moscufo, Nicola
    Cavallari, Michele
    Tauhid, Shahamat
    Bakshi, Rohit
    Weiner, Howard L.
    JOURNAL OF NEUROIMAGING, 2018, 28 (01) : 36 - 47
  • [23] An adaptive sparse Bayesian model combined with probabilistic label fusion for multiple sclerosis lesion segmentation in brain MRI
    Wang, Jingjing
    Liu, Meiru
    Zhang, Chunhui
    Xu, Huaqiang
    Zhang, Liren
    Zhao, Yuefeng
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 105 : 695 - 704
  • [24] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Alijamaat, Ali
    NikravanShalmani, Alireza
    Bayat, Peyman
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (09) : 1459 - 1467
  • [25] Joint Reconstruction of Multi-Contrast MRI for Multiple Sclerosis Lesion Segmentation
    Gomez, Pedro A.
    Sperl, Jonathan I.
    Sprenger, Tim
    Metzler-Baddeley, Claudia
    Jones, Derek K.
    Saemann, Philipp
    Czisch, Michael
    Menzel, Marion I.
    Menze, Bjoern H.
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 155 - 160
  • [26] A toolbox for multiple sclerosis lesion segmentation
    Eloy Roura
    Arnau Oliver
    Mariano Cabezas
    Sergi Valverde
    Deborah Pareto
    Joan C. Vilanova
    Lluís Ramió-Torrentà
    Àlex Rovira
    Xavier Lladó
    Neuroradiology, 2015, 57 : 1031 - 1043
  • [27] A toolbox for multiple sclerosis lesion segmentation
    Roura, Eloy
    Oliver, Arnau
    Cabezas, Mariano
    Valverde, Sergi
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    NEURORADIOLOGY, 2015, 57 (10) : 1031 - 1043
  • [28] Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding
    Cabezas, Mariano
    Oliver, Arnau
    Roura, Eloy
    Freixenet, Jordi
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 115 (03) : 147 - 161
  • [29] An a contrario approach for outliers segmentation:: Application to multiple sclerosis in MRI
    Rousseau, F.
    Blanc, F.
    De Seze, J.
    Rumbach, L.
    Armspach, J. -P
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 9 - +
  • [30] Segmentation of multiple sclerosis lesions in MRI - An image analysis approach
    Krishnan, K
    Atkins, MS
    MEDICAL IMAGING 1998: IMAGE PROCESSING, PTS 1 AND 2, 1998, 3338 : 1106 - 1116