Generalized zero-shot learning for action recognition with web-scale video data

被引:30
|
作者
Liu, Kun [1 ]
Liu, Wu [1 ]
Ma, Huadong [1 ]
Huang, Wenbing [2 ]
Dong, Xiongxiong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Tencent AI Lab, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Generalized zero-shot learning; Surveillance video; Transfer learning; Web-scale video data; FUSION;
D O I
10.1007/s11280-018-0642-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Action recognition in surveillance video makes our life safer by detecting the criminal events or predicting violent emergencies. However, efficient action recognition is not free of difficulty. First, there are so many action classes in daily life that we cannot pre-define all possible action classes beforehand. Moreover, it is very hard to collect real-word videos for certain particular actions such as steal and street fight due to legal restrictions and privacy protection. These challenges make existing data-driven recognition methods insufficient to attain desired performance. Zero-shot learning is potential to be applied to solve these issues since it can perform classification without positive example. Nevertheless, current zero-shot learning algorithms have been studied under the unreasonable setting where seen classes are absent during the testing phase. Motivated by this, we study the task of action recognition in surveillance video under a more realistic generalized zero-shot setting, where testing data contains both seen and unseen classes. To our best knowledge, this is one of the first works to study video action recognition under the generalized zero-shot setting. We firstly perform extensive empirical studies on several existing zero-shot leaning approaches under this new setting on a web-scale video data. Our experimental results demonstrate that, under the generalize setting, typical zero-shot learning methods are no longer effective for the dataset we applied. Then, we propose to deploy generalized zero-shot learning which transfers the knowledge of Web video to detect the anomalous actions in surveillance videos. To verify the effectiveness of methods, we further construct a new surveillance video dataset consisting of nine action classes related to the public safety situation.
引用
收藏
页码:807 / 824
页数:18
相关论文
共 50 条
  • [31] Integrative zero-shot learning for fruit recognition
    Tran-Anh, Dat
    Huu, Quynh Nguyen
    Bui-Quoc, Bao
    Hoang, Ngan Dao
    Quoc, Tao Ngo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 73191 - 73213
  • [32] Kernelized distance learning for zero-shot recognition
    Zarei, Mohammad Reza
    Taheri, Mohammad
    Long, Yang
    INFORMATION SCIENCES, 2021, 580 : 801 - 818
  • [33] An Attribute Learning Method for Zero-Shot Recognition
    Yazdanian, Ramtin
    Shojaee, Seyed Mohsen
    Baghshah, Mahdieh Soleymani
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 2235 - 2240
  • [34] Fabric Recognition Using Zero-Shot Learning
    Wang, Feng
    Liu, Huaping
    Sun, Fuchun
    Pan, Haihong
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (06) : 645 - 653
  • [35] Fabric Recognition Using Zero-Shot Learning
    Feng Wang
    Huaping Liu
    Fuchun Sun
    Haihong Pan
    Tsinghua Science and Technology, 2019, 24 (06) : 645 - 653
  • [36] An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild
    Chao, Wei-Lun
    Changpinyo, Soravit
    Gong, Boqing
    Sha, Fei
    COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 52 - 68
  • [37] Convolutional prototype learning for zero-shot recognition
    Liu, Zhizhe
    Zhang, Xingxing
    Zhu, Zhenfeng
    Zheng, Shuai
    Zhao, Yao
    Cheng, Jian
    IMAGE AND VISION COMPUTING, 2020, 98
  • [38] Hierarchical Prototype Learning for Zero-Shot Recognition
    Zhang, Xingxing
    Gui, Shupeng
    Zhu, Zhenfeng
    Zhao, Yao
    Liu, Ji
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1692 - 1703
  • [39] Adaptive Metric Learning For Zero-Shot Recognition
    Jiang, Huajie
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (09) : 1270 - 1274
  • [40] VDARN: Video Disentangling Attentive Relation Network for Few-Shot and Zero-Shot Action Recognition
    Su, Yong
    Xing, Meng
    An, Simin
    Peng, Weilong
    Feng, Zhiyong
    AD HOC NETWORKS, 2021, 113