Effects of wind veer on a yawed wind turbine wake in atmospheric boundary layer flow

被引:13
|
作者
Narasimhan, Ghanesh [1 ]
Gayme, Dennice F. [1 ]
Meneveau, Charles [1 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
LARGE-EDDY SIMULATIONS; MODEL; STRESS; BLADES;
D O I
10.1103/PhysRevFluids.7.114609
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large eddy simulations (LESs) are used to study the effects of veer (the height-dependent lateral deflection of wind velocity due to Coriolis acceleration) on the evolution of wind turbine wakes in the atmospheric boundary layer. Specifically, this work focuses on turbines that are yawed with respect to the mean incoming wind velocity, which produces laterally deflected wakes that have a curled (crescent-shaped) structure. These effects can be attributed to the introduction of streamwise mean vorticity and the formation of a counter-rotating vortex pair (CVP) on the top and bottom of the wake. In a truly neutral boundary layer (TNBL) in which wind veer effects are absent, these effects can be captured well with existing analytical wake models [Bastankhah et al., J. Fluid Mech. 933, A2 (2022)]. However, in the more realistic case of atmospheric boundary layers subjected to Coriolis acceleration, existing models need to be reexamined and generalized to include the effects of wind veer. To this end, the flow in a conventionally neutral atmospheric boundary layer (CNBL) interacting with a yawed wind turbine is investigated in this paper. Results indicate that in the presence of veer the CVP's top and bottom vortices exhibit considerable asymmetry. However, upon removing the veer component of vorticity, the resulting distribution is much more symmetric and agrees well with that observed in a TNBL. These results are used to develop a simple correction to predict the mean velocity distribution in the wake of a yawing turbine in a CNBL using analytical models. The correction includes the veer-induced sideways wake deformation, as proposed by Abkar et al. [Energies 11, 1838 (2018)]. The resulting model predictions are compared with mean velocity distributions from the LESs, and good agreement is obtained.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] A New Streamwise Scaling for Wind Turbine Wake Modeling in the Atmospheric Boundary Layer
    Vahidi, Dara
    Porte-Agel, Fernando
    ENERGIES, 2022, 15 (24)
  • [12] A wind tunnel investigation of yawed wind turbine wake impacts on downwind wind turbine performances and wind loads
    Uchida, Takanori
    Shibuya, Koichiro
    Richmond-Navarro, Gustavo
    Calderon-Munoz, Williams R.
    WIND ENGINEERING, 2023, 47 (03) : 655 - 670
  • [13] Numerical investigation of the yawed wake and its effects on the downstream wind turbine
    Miao, Weipao
    Li, Chun
    Yang, Jun
    Xie, Xiaoyun
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2016, 8 (03)
  • [14] How does inflow veer affect the veer of a wind-turbine wake?
    Englberger, Antonia
    Lundquist, Julie K.
    NAWEA WINDTECH 2019, 2020, 1452
  • [15] Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel
    E. Barlas
    S. Buckingham
    J. van Beeck
    Boundary-Layer Meteorology, 2016, 158 : 27 - 42
  • [16] Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel
    Barlas, E.
    Buckingham, S.
    van Beeck, J.
    BOUNDARY-LAYER METEOROLOGY, 2016, 158 (01) : 27 - 42
  • [17] Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer: Part 2, the Wake Flow
    Philip E. Hancock
    Frauke Pascheke
    Boundary-Layer Meteorology, 2014, 151 : 23 - 37
  • [18] Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer: Part 2, the Wake Flow
    Hancock, Philip E.
    Pascheke, Frauke
    BOUNDARY-LAYER METEOROLOGY, 2014, 151 (01) : 23 - 37
  • [19] A physics-based model for wind turbine wake expansion in the atmospheric boundary layer
    Vahidi, Dara
    Porte-Agel, Fernando
    JOURNAL OF FLUID MECHANICS, 2022, 943
  • [20] Modeling of the atmospheric boundary layer under stability stratification for wind turbine wake production
    Ichenial, Mohamed Marouan
    El-Hajjaji, Abdellah
    Khamlichi, Abdellatif
    WIND ENGINEERING, 2021, 45 (02) : 178 - 204