Mantle wedge control on back-arc crustal accretion

被引:138
|
作者
Martinez, F [1 ]
Taylor, B
机构
[1] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA
[2] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Dept Geol & Geophys, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/416417a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
At mid-ocean ridges, plate separation leads to upward advection and pressure-release partial melting of fertile mantle material; the melt is then extracted to the spreading centre and the residual depleted mantle flows horizontally away(1). In back-arc basins, the subducting slab is an important control on the pattern of mantle advection and melt extraction, as well as on compositional and fluid gradients(2). Modelling studies(3) predict significant mantle wedge effects on back-arc spreading processes. Here we show that various spreading centres in the Lau back-arc basin exhibit enhanced, diminished or normal magma supply, which correlates with distance from the arc volcanic front but not with spreading rate. To explain this correlation we propose that depleted upper-mantle material, generated by melt extraction in the mantle wedge, is overturned and re-introduced beneath the back-arc basin by subduction-induced corner flow. The spreading centres experience enhanced melt delivery near the volcanic front, diminished melting within the overturned depleted mantle farther from the corner and normal melting conditions in undepleted mantle farther away. Our model explains fundamental differences in crustal accretion variables between back-arc and mid-ocean settings.
引用
收藏
页码:417 / 420
页数:4
相关论文
共 50 条
  • [31] Mantle melting as a function of water content beneath back-arc basins
    Kelley, Katherine A.
    Plank, Terry
    Grove, Timothy L.
    Stolper, Edward M.
    Newman, Sally
    Hauri, Erik
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B9)
  • [32] BACK-ARC GEODYNAMICS
    BARKER, P
    NATURE, 1982, 298 (5870) : 119 - 120
  • [33] Back-Arc Basins
    Martinez, Fernando
    Okino, Kyoko
    Ohara, Yasuhiko
    Reysenbach, Anna-Louise
    Goffredi, Shana K.
    OCEANOGRAPHY, 2007, 20 (01) : 116 - 127
  • [34] A back-arc in time
    Peter Michael
    Nature, 2011, 469 : 170 - 171
  • [35] Hf isotopic evidence for small-scale heterogeneity in the mode of mantle wedge enrichment: Southern Havre Trough back-arc
    Todd, Erin
    Gill, J. B.
    Wysoczanski, R. J.
    Handler, M.
    Wright, I. C.
    Gamble, J.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A1333 - A1333
  • [36] Accretion of "young" Phanerozoic subcontinental lithospheric mantle triggered by back-arc extension-the case of the Ivrea-Verbano Zone
    Ogunyele, Abimbola C.
    Sanfilippo, Alessio
    Salters, Vincent J. M.
    Bonazzi, Mattia
    Zanetti, Alberto
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [37] Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for 'back-arc' entrapment of Pacific MORB mantle
    Hoang, Nguyen
    Uto, Kozo
    EARTH AND PLANETARY SCIENCE LETTERS, 2006, 249 (3-4) : 229 - 240
  • [38] Episodic back-arc extension during restricted mantle convection in the Central Mediterranean
    Faccenna, C
    Funiciello, F
    Giardini, D
    Lucente, P
    EARTH AND PLANETARY SCIENCE LETTERS, 2001, 187 (1-2) : 105 - 116
  • [39] Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism
    Long, Maureen D.
    Till, Christy B.
    Druken, Kelsey A.
    Carlson, Richard W.
    Wagner, Lara S.
    Fouch, Matthew J.
    James, David E.
    Grove, Timothy L.
    Schmerr, Nicholas
    Kincaid, Chris
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2012, 13
  • [40] Seismic evidence of effects of water on melt transport in the Lau back-arc mantle
    Wei, S. Shawn
    Wiens, Douglas A.
    Zha, Yang
    Plank, Terry
    Webb, Spahr C.
    Blackman, Donna K.
    Dunn, Robert A.
    Conder, James A.
    NATURE, 2015, 518 (7539) : 395 - 398