Super-Rough Glassy Phase of the Random Field XY Model in Two Dimensions

被引:12
|
作者
Perret, Anthony [1 ]
Ristivojevic, Zoran [2 ]
Le Doussal, Pierre [2 ]
Schehr, Gregory [1 ]
Wiese, Kay J. [2 ]
机构
[1] Univ Paris 11, CNRS, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[2] Ecole Normale Super, CNRS, Phys Theor Lab, F-75005 Paris, France
关键词
TRANSITION; DYNAMICS; LATTICES;
D O I
10.1103/PhysRevLett.109.157205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study both analytically, using the renormalization group (RG) to two loop order, and numerically, using an exact polynomial algorithm, the disorder-induced glass phase of the two-dimensional XY model with quenched random symmetry-breaking fields and without vortices. In the super-rough glassy phase, i.e., below the critical temperature T-c, the disorder and thermally averaged correlation function B(r) of the phase field theta(x), B(r) = <(<[theta(x) - theta(x + r)](2)>)over bar> behaves, for r >> a, as B(r) similar or equal to A(tau)ln(2)(r/a) where r = vertical bar r vertical bar and a is a microscopic length scale. We derive the RG equations up to cubic order in tau = (T-c - T)/T-c and predict the universal amplitude A(tau) = 2 tau(2) - 2 tau(2) + O(tau(4)). The universality of A(tau) results from non-trivial cancellations between nonuniversal constants of RG equations. Using an exact polynomial algorithm on an equivalent dimer version of the model we compute A(tau) numerically and obtain a remarkable agreement with our analytical prediction, up to tau approximate to 0.5.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] On Random Field Induced Ordering in the Classical XY Model
    Nicholas Crawford
    Journal of Statistical Physics, 2011, 142 : 11 - 42
  • [22] Geometrical and topological study of the Kosterlitz-Thouless phase transition in the XY model in two dimensions
    Bel-Hadj-Aissa, Ghofrane
    Gori, Matteo
    Franzosi, Roberto
    Pettini, Marco
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (02):
  • [23] Glassy phases and driven response of the phase-field-crystal model with random pinning
    Granato, E.
    Ramos, J.A.P.
    Achim, C.V.
    Lehikoinen, J.
    Ying, S.C.
    Ala-Nissila, T.
    Elder, K.R.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2011, 84 (03):
  • [24] Glassy phases and driven response of the phase-field-crystal model with random pinning
    Granato, E.
    Ramos, J. A. P.
    Achim, C. V.
    Lehikoinen, J.
    Ying, S. C.
    Ala-Nissila, T.
    Elder, K. R.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [25] Random field induced order in two dimensions
    Crawford, Nicholas
    Ruszel, Wioletta M.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 242 - 280
  • [26] Glassy vortex state in a two-dimensional disordered XY model
    Scheidl, S
    PHYSICAL REVIEW B, 1997, 55 (01) : 457 - 471
  • [27] Quantum spherical XY model with orthorhombic anisotropy in two dimensions
    Fridman, YA
    Spirin, DV
    EUROPEAN PHYSICAL JOURNAL B, 2003, 31 (03): : 311 - 313
  • [28] Quantum spherical XY model with orthorhombic anisotropy in two dimensions
    Yu.A. Fridman
    D.V. Spirin
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 31 : 311 - 313
  • [29] Glassy critical points and the random field Ising model
    Franz, Silvio
    Parisi, Giorgio
    Ricci-Tersenghi, Federico
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [30] Phase transitions in the two-dimensional XY model with random phases: A Monte Carlo study
    Maucourt, J
    Grempel, DR
    PHYSICAL REVIEW B, 1997, 56 (05): : 2572 - 2579