ShEMO: a large-scale validated database for Persian speech emotion detection

被引:35
|
作者
Nezami, Omid Mohamad [1 ]
Lou, Paria Jamshid [2 ]
Karami, Mansoureh [2 ]
机构
[1] Islamic Azad Univ, Bijar Branch, Bijar, Iran
[2] Sharif Univ Technol, Tehran, Iran
关键词
Emotional speech; Speech database; Emotion detection; Benchmark; Persian; RECOGNITION; MODEL; AGREEMENT; VALENCE; AROUSAL;
D O I
10.1007/s10579-018-9427-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces a large-scale, validated database for Persian called Sharif Emotional Speech Database (ShEMO). The database includes 3000 semi-natural utterances, equivalent to 3h and 25min of speech data extracted from online radio plays. The ShEMO covers speech samples of 87 native-Persian speakers for five basic emotions including anger, fear, happiness, sadness and surprise, as well as neutral state. Twelve annotators label the underlying emotional state of utterances and majority voting is used to decide on the final labels. According to the kappa measure, the inter-annotator agreement is 64% which is interpreted as substantial agreement. We also present benchmark results based on common classification methods in speech emotion detection task. According to the experiments, support vector machine achieves the best results for both gender-independent (58.2%) and gender-dependent models (female=59.4%, male=57.6%). The ShEMO will be available for academic purposes free of charge to provide a baseline for further research on Persian emotional speech.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] MMsINC: a large-scale chemoinformatics database
    Masciocchi, Joel
    Frau, Gianfranco
    Fanton, Marco
    Sturlese, Mattia
    Floris, Matteo
    Pireddu, Luca
    Palla, Piergiorgio
    Cedrati, Fabian
    Rodriguez-Tome, Patricia
    Moro, Stefano
    NUCLEIC ACIDS RESEARCH, 2009, 37 : D284 - D290
  • [22] CogNet: a Large-Scale Cognate Database
    Batsuren, Khuyagbaatar
    Bella, Gabor
    Giunchiglia, Fausto
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3136 - 3145
  • [23] Large-Scale Visual Speech Recognition
    Shillingford, Brendan
    Assael, Yannis
    Hoffman, Matthew W.
    Paine, Thomas
    Hughes, Cian
    Prabhu, Utsav
    Liao, Hank
    Sak, Hasim
    Rao, Kanishka
    Bennett, Lorrayne
    Mulville, Marie
    Denil, Misha
    Coppin, Ben
    Laurie, Ben
    Senior, Andrew
    de Freitas, Nando
    INTERSPEECH 2019, 2019, : 4135 - 4139
  • [24] A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection
    Li, Liu
    Xu, Mai
    Liu, Hanruo
    Li, Yang
    Wang, Xiaofei
    Jiang, Lai
    Wang, Zulin
    Fan, Xiang
    Wang, Ningli
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (02) : 413 - 424
  • [25] Large-scale detection of repetitions
    Smyth, W. F.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2016):
  • [26] A global database of large-scale transverse drainages
    Lee, Jacqueline
    DATA IN BRIEF, 2019, 23
  • [27] A large-scale stream benthic diatom database
    Gosselain, W
    Coste, M
    Campeau, S
    Ector, L
    Fauville, C
    Delmas, F
    Knoflacher, M
    Licursi, M
    Rimet, F
    Tison, J
    Tudesque, L
    Descy, JP
    HYDROBIOLOGIA, 2005, 542 (1) : 151 - 163
  • [28] ImageNet: A Large-Scale Hierarchical Image Database
    Deng, Jia
    Dong, Wei
    Socher, Richard
    Li, Li-Jia
    Li, Kai
    Li Fei-Fei
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 248 - 255
  • [29] A large-scale protein-function database
    Rolf Apweiler
    Richard Armstrong
    Amos Bairoch
    Athel Cornish-Bowden
    Peter J Halling
    Jan-Hendrik S Hofmeyr
    Carsten Kettner
    Thomas S Leyh
    Johann Rohwer
    Dietmar Schomburg
    Christoph Steinbeck
    Keith Tipton
    Nature Chemical Biology, 2010, 6 : 785 - 785
  • [30] A large-scale protein-function database
    Apweiler, Rolf
    Armstrong, Richard
    Bairoch, Amos
    Cornish-Bowden, Athel
    Halling, Peter J.
    Hofmeyr, Jan-Hendrik S.
    Kettner, Carsten
    Leyh, Thomas S.
    Rohwer, Johann
    Schomburg, Dietmar
    Steinbeck, Christoph
    Tipton, Keith
    NATURE CHEMICAL BIOLOGY, 2010, 6 (11) : 785 - 785