Using Language Models and Topic Models for XML Retrieval

被引:0
|
作者
Huang, Fang [1 ]
机构
[1] Robert Gordon Univ, Sch Comp, Aberdeen AB9 1FR, Scotland
来源
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper exposes the results of our participation in the INEX 2007 ad hoc track. We implemented two different models: a mixture language model and a topic model. For the language model, we focused on the question of how shallow features of text display information in an XML document can be used to enhance retrieval effectiveness. Our language model combined estimates based on element full-text and the compact representation of the element. We also used non-content priors, including the location the element appears in the original document, and the length of the element path, to boost retrieval effectiveness. For the topic model, we looked at a recent statistical model called Latent Dirichlet Allocation[1], and explored how it could be applied to XML retrieval.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 50 条
  • [41] Combined models for topic spotting and topic-dependent Language Modeling
    Bigi, B
    De Mori, R
    El-Beze, M
    Spriet, T
    1997 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, PROCEEDINGS, 1997, : 535 - 542
  • [42] Japanese Spontaneous Spoken Document Retrieval Using NMF-Based Topic Models
    Hu, Xinhui
    Kashioka, Hideki
    Isotani, Ryosuke
    Nakamura, Satoshi
    INFORMATION RETRIEVAL TECHNOLOGY, PROCEEDINGS, 2009, 5839 : 149 - 156
  • [43] Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants
    Mirwaes Wahabzada
    Anne-Katrin Mahlein
    Christian Bauckhage
    Ulrike Steiner
    Erich-Christian Oerke
    Kristian Kersting
    Scientific Reports, 6
  • [44] Mixture models, overlap, and structural hints in XML element retrieval
    Sigurbjörnsson, B
    Kamps, J
    de Rijke, M
    ADVANCES IN XML INFORMATION RETRIEVAL, 2005, 3493 : 196 - 210
  • [45] PromptMTopic: Unsupervised Multimodal Topic Modeling of Memes using Large Language Models
    Prakash, Nirmalendu
    Wang, Han
    Hoang, Nguyen Khoi
    Hee, Ming Shan
    Lee, Roy Ka-Wei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 621 - 631
  • [46] Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants
    Wahabzada, Mirwaes
    Mahlein, Anne-Katrin
    Bauckhage, Christian
    Steiner, Ulrike
    Oerke, Erich-Christian
    Kersting, Kristian
    SCIENTIFIC REPORTS, 2016, 6
  • [47] A Framework for Enhancing Statute Law Retrieval Using Large Language Models
    Pham, Trang Ngoc Anh
    Do, Dinh-Truong
    Nguyen, Minh Le
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2024, 2024, 14741 : 247 - 259
  • [48] Integrating social annotations into topic models for personalized document retrieval
    Xu, Bo
    Lin, Hongfei
    Lin, Yuan
    Guan, Yizhou
    SOFT COMPUTING, 2020, 24 (03) : 1707 - 1716
  • [49] Integrating social annotations into topic models for personalized document retrieval
    Bo Xu
    Hongfei Lin
    Yuan Lin
    Yizhou Guan
    Soft Computing, 2020, 24 : 1707 - 1716
  • [50] Topic Models Ensembles for AD-HOC Information Retrieval
    Ormeno, Pablo
    Mendoza, Marcelo
    Valle, Carlos
    INFORMATION, 2021, 12 (09)