The Number of Limit Cycles of a Polynomial System on the Plane

被引:2
|
作者
Liu, Chao [1 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
GLOBAL BIFURCATION; FAMILY;
D O I
10.1155/2013/482850
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perturb the vector field (x) over dot = -yC(x, y), (y) over dot = -xC(x, y) with a polynomial perturbation of degree n, where C(x, y) = (1 - y(2))(m), and study the number of limit cycles bifurcating from the period annulus surrounding the origin.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] On the Number of Limit Cycles for Piecewise Polynomial Holomorphic Systems\ast
    Gasull, Armengol
    Rondon, Gabriel
    da Silva, Paulo Ricardo
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (03): : 2593 - 2622
  • [32] The number of limit cycles for regularized piecewise polynomial systems is unbounded
    Huzak, R.
    Kristiansen, K. Uldall
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 342 : 34 - 62
  • [33] On the number of limit cycles in near-hamiltonian polynomial systems
    Han, Maoan
    Chen, Guanrong
    Sun, Chengjun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (06): : 2033 - 2047
  • [34] On the Number of Limit Cycles of Discontinuous Lienard Polynomial Differential Systems
    Jiang, Fangfang
    Ji, Zhicheng
    Wang, Yan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (14):
  • [35] The number of limit cycles due to polynomial perturbations of the harmonic oscillator
    Iliev, ID
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 : 317 - 322
  • [36] On the Number of Limit Cycles in Two Classes of Polynomial Differential Systems
    Bao, Yu
    Li, Shimin
    Llibre, Jaume
    Zhao, Yulin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025,
  • [38] A Precise Estimate of the Number of Limit Cycles of Autonomous Systems on the Plane
    L. A. Cherkas
    Differential Equations, 2003, 39 : 797 - 806
  • [39] A precise estimate of the number of limit cycles of autonomous systems on the plane
    Cherkas, LA
    DIFFERENTIAL EQUATIONS, 2003, 39 (06) : 797 - 806
  • [40] A polynomial differential system with nine limit cycles at infinity
    Huang, WT
    Liu, YR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (3-4) : 577 - 588