Ridge width effect on comb operation in terahertz quantum cascade lasers

被引:22
|
作者
Zhou, K. [1 ,2 ]
Li, H. [1 ,2 ]
Wan, W. J. [1 ]
Li, Z. P. [1 ,2 ]
Liao, X. Y. [1 ,2 ]
Cao, J. C. [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Key Lab Terahertz Solid State Technol, 865 Changning Rd, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
DISPERSION COMPENSATION; COMPRESSION; PAIRS; THZ;
D O I
10.1063/1.5090788
中图分类号
O59 [应用物理学];
学科分类号
摘要
We systematically investigate the laser ridge width effect on comb operation of single plasmon waveguide quantum cascade lasers emitting around 4.2THz. The total group velocity dispersion (GVD), including the gain, waveguide, and material dispersions, is numerically evaluated for 6-mm long lasers with ridge widths varying from 100 to 200m. The simulation reveals that although calculated waveguide GVDs of lasers with different ridge widths are almost identical, the clamped gain dispersion partially determined by the frequency-dependent waveguide loss strongly contributes to the total GVD. From the simulation, we find that the laser with a 150-m-wide ridge shows the flattest total GVD in the lasing range between 4.05 and 4.35THz. The optimal ridge width of 150m for comb operation is also experimentally verified by intermode beat note and on-chip dual-comb measurements.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] On-chip terahertz dual-comb source based on quantum cascade lasers
    Rosch, M.
    Scalari, G.
    Villares, G.
    Suess, M. J.
    Bosco, L.
    Beck, M.
    Faist, J.
    2016 41ST INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2016,
  • [32] Dependence of threshold current density on the waveguide ridge width in quantum-cascade lasers
    Beji, Gabriel
    Ikonic, Zoran
    Indjin, Dragan
    Evans, Craig A.
    Harrison, Paul
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (09) : 1320 - 1326
  • [33] A Study on the Photoelectric Properties of Dual Ridge Terahertz Quantum Cascade Lasers at 3.1 THz
    Yang, Qi
    Zhang, Jicheng
    Wang, Xuemin
    Zhan, Zhiqiang
    Jiang, Tao
    Li, Jia
    Zou, Ruijiao
    Li, Keyu
    Chen, Fengwei
    Wu, Weidong
    NANOMATERIALS, 2022, 12 (15)
  • [34] Nanowire terahertz quantum cascade lasers
    Grange, Thomas
    APPLIED PHYSICS LETTERS, 2014, 105 (14)
  • [35] Terahertz Metasurface Quantum Cascade Lasers
    Xu, Luyao
    Curwen, Christopher
    Reno, John
    Itoh, Tatsuo
    Williams, Benjamin S.
    2016 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2016,
  • [36] The effect of hydrostatic pressure on the operation of quantum cascade lasers
    Adams, Alfred R.
    Marko, Igor P.
    Sweeney, Stephen J.
    Teissier, Roland
    Baranov, Alexei N.
    Tomic, Stanko
    QUANTUM SENSING AND NANOPHOTONIC DEVICES VI, 2009, 7222
  • [37] Terahertz Imaging with Quantum Cascade Lasers
    Lee, Alan W.
    Kao, Tsung-Yu
    Zimmerman, Ian A.
    Oda, Naoki
    Hu, Qing
    IMAGE SENSING TECHNOLOGIES: MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS III, 2016, 9854
  • [38] Invited - Terahertz quantum cascade lasers
    Davies, G
    Linfield, E
    2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, : 743 - 746
  • [39] Terahertz quantum-cascade lasers
    Williams, Benjamin S.
    NATURE PHOTONICS, 2007, 1 (09) : 517 - 525
  • [40] Terahertz quantum cascade lasers - Discussion
    Hu, Q
    Faist, J
    Smith, G
    Murdin, B
    Phillips, C
    Barbieri, S
    Unterrainer, K
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1815): : 229 - 231