Steering and Horizontal Motion Control in Insect-Inspired Flapping-Wing MAVs: The Tunable Impedance Approach

被引:0
|
作者
Mahjoubi, Hosein [1 ]
Byl, Katie [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Robot Lab, Santa Barbara, CA 93106 USA
关键词
Microrobotics; Aerial Robotics; Insect Flight; Tunable Impedance; Passive Dynamics; Maneuverability; Steering; Simulation; FLIGHT; AERODYNAMICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Inspired by insect flight, flapping-wing microaerial vehicles (FWMAVs) are an ongoing design problem, posing exceptional challenges in morphological construction, force production, and control methodology. Some impressive initial results have emerged from work focused on generating sufficient lift force for levitation or vertical acceleration [1]; however, effective methods for motion control remain an open problem. In this work, we propose and analyze a simplified approach to the FWMAV maneuvering problem that 1) focuses on motion control and steering in the horizontal plane and 2) employs a wing design that relies on tunable passive dynamics to set the angle of attack. Our simulated experiments with this method demonstrate an exceptional capability in handling pitch tracking and steering maneuvers, even in presence of measurement noise. We compare the performance of our approach with that of another promising technique for steering: the "split cycle" [2]. Simulation results suggest that in our approach, steering maneuvers and planar motion are both faster and smoother. Furthermore, a passive dynamic control approach in FWMAV proves to have considerably lower bandwidth requirements. We will discuss how this is advantageous when designing a real FWMAV.
引用
收藏
页码:901 / 908
页数:8
相关论文
共 50 条
  • [31] Evolved Neuromorphic Flight Control for a Flapping-Wing Mechanical Insect Model
    Boddhu, Sanjay K.
    Gallagher, John C.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 1744 - 1751
  • [32] System design and control of a butterfly-inspired flapping-wing aerial robot based on wire-driven steering
    Huang H.-F.
    He W.
    Zou Y.
    Yang K.-H.
    Sun C.-Y.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (07): : 1203 - 1210
  • [33] Dynamics and flight control of a flapping-wing robotic insect in the presence of wind gusts
    Chirarattananon, Pakpong
    Chen, Yufeng
    Helbling, E. Farrell
    Ma, Kevin Y.
    Cheng, Richard
    Wood, Robert J.
    INTERFACE FOCUS, 2017, 7 (01)
  • [34] Aerodynamic Analysis and Flight Control of a Butterfly-Inspired Flapping-Wing Robot
    Huang, Haifeng
    Chen, Ze
    He, Wei
    Li, Qing
    Niu, Tao
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (11): : 9677 - 9684
  • [35] Frequency-Modulated Control for Insect-Scale Flapping-Wing Vehicles
    McGill, Rebecca
    Hyun, Nak-seung Patrick
    Wood, Robert J.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 12515 - 12522
  • [36] An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering
    Nguyen, Quoc-Viet
    Chan, Woei Leong
    Debiasi, Marco
    BIOINSPIRATION, BIOMIMETICS, AND BIOREPLICATION 2015, 2015, 9429
  • [37] Modeling and Hover Flight Control of a Micromechanical Flapping-Wing Aircraft Inspired by Wing-Tail Interaction
    Wang, Liang
    Jiang, Wuyao
    Zhao, Longfei
    Jiao, Zongxia
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (06) : 3132 - 3142
  • [38] Human Memory/Learning Inspired Control Method for Flapping-Wing Micro Air Vehicles
    Song, Y. D.
    Weng, Liguo
    Lebby, Gary
    JOURNAL OF BIONIC ENGINEERING, 2010, 7 (02) : 127 - 133
  • [39] Human Memory/Learning Inspired Control Method for Flapping-Wing Micro Air Vehicles
    Y. D. Song
    Liguo Weng
    Gary Lebby
    Journal of Bionic Engineering, 2010, 7 : 127 - 133
  • [40] Indirect Control and Design of Insect-Like Flapping-Wing Micro Aerial Vehicle
    Dong Weizhong
    Wang Zhi Dong
    2017 IEEE 3RD INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC), 2017, : 1257 - 1263