Comparison between wave functions in the random phase approximation, renormalized random phase approximation, and self-consistent random phase approximation methods

被引:19
|
作者
Hirsch, JG
Civitarese, O
Reboiro, M
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Natl Univ La Plata, Dept Fis, RA-1900 La Plata, Argentina
来源
PHYSICAL REVIEW C | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevC.60.024309
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The random phase approximation (RPA), the renormalized RPA (RRPA), and the self-consistent RPA (SCRPA) methods an applied to calculate the wave functions of the ground and excited states of an exactly solvable model. The approximated wave functions are expanded in the basis of the exact solutions. It is found that, when the RPA collapses, the RPA wave functions are orthogonal to the exact solutions while the RRPA and SCRPA ones have small but finite overlaps with the exact results. In spite of the apparently good agreement between the results of the RRPA, the SCRPA, and the exact solution, for the energy of the first excited state beyond the point of collapse, it is found that these approximations do not correctly describe the exact wave functions. [S0556-2813(99)03808-X].
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Particle number fluctuations in the quasiparticle random-phase approximation and renormalized quasiparticle random-phase approximation
    Mariano, A
    Hirsch, JG
    PHYSICAL REVIEW C, 1998, 57 (06): : 3015 - 3019
  • [22] Random-Phase Approximation Methods
    Chen, Guo P.
    Voora, Vamsee K.
    Agee, Matthew M.
    Balasubramani, Sree Ganesh
    Furche, Filipp
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 68, 2017, 68 : 421 - 445
  • [23] Selfconsistent random phase approximation methods
    Yu, Jason M.
    Nguyen, Brian D.
    Tsai, Jeffrey
    Hernandez, Devin J.
    Furche, Filipp
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (04):
  • [24] A consistent approach in relativistic random phase approximation
    Ma, ZY
    Van Giai, N
    Wandelt, A
    Vretenar, D
    Ring, P
    NUCLEAR PHYSICS A, 2001, 687 (1-2) : 64C - 71C
  • [25] Second random phase approximation and renormalized realistic interactions
    Papakonstantinou, P.
    Roth, R.
    PHYSICS LETTERS B, 2009, 671 (03) : 356 - 360
  • [26] ON RENORMALIZED RANDOM PHASE APPROXIMATION FOR DILUTE MAGNETIC ALLOYS
    KURODA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1970, 43 (04): : 870 - &
  • [27] Self-consistent random-phase approximation for hot finite Fermi systems
    A. I. Vdovin
    D. S. Kosov
    W. Nawrocka
    Theoretical and Mathematical Physics, 1997, 111 : 613 - 620
  • [28] Self-consistent quasiparticle random phase approximation for the description of superfluid Fermi systems
    Rabhi, A
    Bennaceur, R
    Chanfray, G
    Schuck, P
    PHYSICAL REVIEW C, 2002, 66 (06): : 21
  • [29] Tensor effective interaction in self-consistent random-phase approximation calculations
    Anguiano, M.
    Co', G.
    De Donno, V.
    Lallena, A. M.
    PHYSICAL REVIEW C, 2011, 83 (06):
  • [30] SELF-CONSISTENT RANDOM-PHASE APPROXIMATION FOR 3-BODY FORCES
    WEIGEL, MK
    WINTER, J
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1978, 4 (09) : 1427 - 1440