A numerical method for solving a stochastic inverse problem for parameters

被引:6
|
作者
Butler, T. [1 ]
Estep, D. [2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
基金
美国国家卫生研究院; 美国国家航空航天局; 美国国家科学基金会;
关键词
A posteriori error analysis; Adjoint problem; Density estimation; Inverse sensitivity analysis; Nonparametric density estimation; Sensitivity analysis; NONPARAMETRIC DENSITY-ESTIMATION; UNCERTAIN PARAMETERS; EVOLUTION;
D O I
10.1016/j.anucene.2012.05.016
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
We review recent work (Briedt et al., 2011, 2012) on a new approach to the formulation and solution of the stochastic inverse parameter determination problem, i.e. determine the random variation of input parameters to a map that matches specified random variation in the output of the map, and then apply the various aspects of this method to the interesting Brusselator model. In this approach, the problem is formulated as an inverse problem for an integral equation using the Law of Total Probability. The solution method employs two steps: (1) we construct a systematic method for approximating set-valued inverse solutions and (2) we construct a computational approach to compute a measure-theoretic approximation of the probability measure on the input space imparted by the approximate set-valued inverse that solves the inverse problem. In addition to convergence analysis, we carry out an a posteriori error analysis on the computed probability distribution that takes into account all sources of stochastic and deterministic error. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:86 / 94
页数:9
相关论文
共 50 条
  • [21] A numerical method for solving stochastic linear quadratic problem with a finance application
    Bafghi, Mohammad Hossein Fotoohi
    Effati, Sohrab
    Fard, Omid Solaymani
    JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (03): : 499 - 514
  • [22] Numerical Solving of Radiation Geometrical Inverse Problem
    Nenarokomov, Aleksey V.
    Chebakov, Evgeniy V.
    Reviznikov, Dmitry L.
    Krainova, Irina V.
    HEAT TRANSFER ENGINEERING, 2024, 45 (02) : 117 - 132
  • [23] A method of solving the inverse problem of magnetostatics
    Pechenkov, AN
    Shcherbinin, VE
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 1999, 35 (10) : 789 - 790
  • [24] A method for solving an inverse biharmonic problem
    Shidfar, A
    Shahrezaee, A
    Garshasbi, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (02) : 457 - 462
  • [25] Fast Numerical Method of Second Order of Accuracy for Solving the Inverse Scattering Problem
    Belai, O. V.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2023, 50 (SUPPL 3) : S366 - S373
  • [26] A numerical method for solving the inverse heat conduction problem without initial value
    Wang, Y. B.
    Cheng, J.
    Nakagawa, J.
    Yamamoto, M.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2010, 18 (05) : 655 - 671
  • [27] Fast Numerical Method of Second Order of Accuracy for Solving the Inverse Scattering Problem
    O. V. Belai
    Bulletin of the Lebedev Physics Institute, 2023, 50 : S366 - S373
  • [29] Numerical techniques for solving system of nonlinear inverse problem
    Pourgholi, Reza
    Tabasi, S. Hashem
    Zeidabadi, Hamed
    ENGINEERING WITH COMPUTERS, 2018, 34 (03) : 487 - 502
  • [30] Numerical algorithms for structural magnetometry inverse problem solving
    Martyshko, P. S.
    Fedorova, N., V
    Rublev, A. L.
    RUSSIAN JOURNAL OF EARTH SCIENCES, 2021, 21 (03):