Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities

被引:37
|
作者
Narayanan, Barath Narayanan [1 ]
Hardie, Russell C. [1 ]
Kebede, Temesguen M. [1 ]
Sprague, Matthew J. [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn, 300 Coll Pk, Dayton, OH 45469 USA
关键词
Computer-aided detection system; Chest radiographs; Computed tomography; Lung nodules; PULMONARY NODULES; AUTOMATED DETECTION; CHEST RADIOGRAPHS; DIAGNOSIS SYSTEM; IMAGE DATABASE; CT SCANS; CLASSIFICATION; PERFORMANCE; RADIOLOGISTS; CANCER;
D O I
10.1007/s10044-017-0653-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early detection of pulmonary lung nodules plays a significant role in the diagnosis of lung cancer. Computed tomography (CT) and chest radiographs (CRs) are currently being used by radiologists to detect such nodules. In this paper, we present a novel cluster-based classifier architecture for lung nodule computer-aided detection systems in both modalities. We propose a novel optimized method of feature selection for both cluster and classifier components. For CRs, we make use of an independent database comprising of 160 cases with a total of 173 nodules for training purposes. Testing is implemented on a publicly available database created by the Standard Digital Image Database Project Team of the Scientific Committee of the Japanese Society of Radiological Technology (JRST). The JRST database comprises 154 CRs containing one radiologist-confirmed nodule in each. In this research, we exclude 14 cases from the JRST database that contain lung nodules in the retrocardiac and subdiaphragmatic regions of the lung. For CT scans, the analysis is based on threefold cross-validation performance on 107 cases from publicly available dataset created by Lung Image Database Consortium comprised of 280 nodules. Overall, with a specificity of 3 false positives per case/patient on average, we show a classifier performance boost of 7.7% for CRs and 5.0% for CT scans when compared to a single aggregate classifier architecture.
引用
收藏
页码:559 / 571
页数:13
相关论文
共 50 条
  • [31] Neural networks for computer-aided diagnosis: Detection of lung nodules in chest radiograms
    Coppini, G
    Diciotti, S
    Falchini, M
    Villari, N
    Valli, G
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2003, 7 (04): : 344 - 357
  • [32] Application value of a computer-aided diagnosis and management system for the detection of lung nodules
    Chen, Jingwen
    Cao, Rong
    Jiao, Shengyin
    Dong, Yunpeng
    Wang, Zilong
    Zhu, Hua
    Luo, Qian
    Zhang, Lei
    Wang, Han
    Yin, Xiaorui
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (10) : 6929 - +
  • [33] A COMPUTER-AIDED APPROACH TO DIAGNOSIS AND DETECTION OF OBSTRUCTIVE LUNG DISEASE
    CHESTER, EH
    FEINBERG, BN
    SCHOEFFL.JD
    AMERICAN REVIEW OF RESPIRATORY DISEASE, 1970, 101 (06): : 1001 - &
  • [34] Computer-aided detection of interstitial lung diseases: A texture approach
    Plankis, Tomas
    Juozapavicius, Algimantas
    Stasiene, Egle
    Usonis, Vytautas
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (03): : 404 - 411
  • [35] Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction
    Lee, Michael C.
    Boroczky, Lilla
    Sungur-Stasik, Kivilcim
    Cann, Aaron D.
    Borczuk, Alain C.
    Kawut, Steven M.
    Powell, Charles A.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 50 (01) : 43 - 53
  • [36] Predictive Deconvolution and Hybrid Feature Selection for Computer-Aided Detection of Prostate Cancer
    Maggio, Simona
    Palladini, Alessandro
    De Marchi, Luca
    Alessandrini, Martino
    Speciale, Nicolo
    Masetti, Guido
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (02) : 455 - 464
  • [37] Model-based detection of lung nodules in computed tomography exams -: Thoracic computer-aided diagnosis
    McCulloch, CC
    Kaucic, RA
    Mendonça, PRS
    Walter, DJ
    Avila, RS
    ACADEMIC RADIOLOGY, 2004, 11 (03) : 258 - 266
  • [38] New methods for using computer-aided detection information for the detection of lung nodules on chest radiographs
    Schalekamp, S.
    van Ginneken, B.
    Heggelman, B. G. F.
    Imhof-Tas, M.
    Somers, I.
    Brink, M.
    Spee, M.
    Schaefer-Prokop, C. M.
    Karssemeijer, N.
    BRITISH JOURNAL OF RADIOLOGY, 2014, 87 (1036):
  • [39] 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets
    Zhang, Weihang
    Wang, Xue
    Li, Xuanping
    Chen, Junfeng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 92 : 64 - 72
  • [40] A New 3D Texture Feature Based Computer-Aided Diagnosis Approach to Differentiate Pulmonary Nodules
    Han, Fangfang
    Wang, Huafeng
    Song, Bowen
    Zhang, Guopeng
    Lu, Hongbing
    Moore, William
    Zhao, Hong
    Liang, Zhengrong
    MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670