Quantifying degrees of information in remote sensing imagery

被引:0
|
作者
Lin, Zongjian [1 ]
Deng, Bing [1 ]
机构
[1] Chinese Acad Surveying & Mapping, Beijing 100039, Peoples R China
关键词
information quantity; uncertainty; entropy; remote sensing imagery; correlation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
So far there's been no metrology on the measurement of information of remote sensing imagery. We introduce the conception "Information quantity" from information theory to solve this problem. In this paper, the method and formulation for calculating information content of remote sensing imagery are discussed. Furthermore, we calculate the information quantity of some imagery and analyze the factors that affect the calculation on information quantity.
引用
收藏
页码:201 / 205
页数:5
相关论文
共 50 条
  • [21] Regularization destriping of remote sensing imagery
    Basnayake, Ranil
    Bollt, Erik
    Tufillaro, Nicholas
    Sun, Jie
    Gierach, Michelle
    NONLINEAR PROCESSES IN GEOPHYSICS, 2017, 24 (03) : 367 - 378
  • [22] Wetland information extraction of remote sensing imagery based on Markov random field theory
    Zhang, Dengrong
    Wu, Yang
    REMOTE SENSING OF THE ENVIRONMENT: THE 17TH CHINA CONFERENCE ON REMOTE SENSING, 2011, 8203
  • [23] Advances in urban information extraction from high-resolution remote sensing imagery
    Jianya Gong
    Chun Liu
    Xin Huang
    Science China Earth Sciences, 2020, 63 : 463 - 475
  • [24] Advances in urban information extraction from high-resolution remote sensing imagery
    Jianya GONG
    Chun LIU
    Xin HUANG
    ScienceChina(EarthSciences), 2020, 63 (04) : 463 - 475
  • [25] Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient
    Cole-Rhodes, AA
    Johnson, KL
    LeMoigne, J
    Zavorin, I
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) : 1495 - 1511
  • [26] SPARSE REPRESENTATION BASED SUBPIXEL INFORMATION EXTRACTION FRAMEWORK FOR HYPERSPECTRAL REMOTE SENSING IMAGERY
    Feng, Ruyi
    He, Da
    Zhong, Yanfei
    Zhang, Liangpei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7026 - 7029
  • [27] A Fuzzy Kohonen Local Information C-Means Clustering for Remote Sensing Imagery
    Singh, Krishna Kant
    Nigam, M. J.
    Pal, Kirat
    Mehrotra, Akansha
    IETE TECHNICAL REVIEW, 2014, 31 (01) : 75 - 81
  • [28] A NEW ALGORITHM FOR WATER INFORMATION EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGERY
    Li, Shijin
    Wang, Shengte
    Zheng, Zhan
    Wan, Dingsheng
    Feng, Jun
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4359 - 4363
  • [29] Encoding Contextual Information by Interlacing Transformer and Convolution for Remote Sensing Imagery Semantic Segmentation
    Li, Xin
    Xu, Feng
    Xia, Runliang
    Li, Tao
    Chen, Ziqi
    Wang, Xinyuan
    Xu, Zhennan
    Lyu, Xin
    REMOTE SENSING, 2022, 14 (16)
  • [30] Using remote sensing imagery and geographic information systems for mapping vegetation indices in Iraq
    Ali, Hussain Zaydan
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 1205 - 1211