TENSOR COMPLETION THROUGH MULTIPLE KRONECKER PRODUCT DECOMPOSITION

被引:0
|
作者
Anh-Huy Phan [1 ]
Cichocki, Andrzej [1 ]
Tichavsky, Petr [2 ]
Luta, Gheorghe [3 ]
Brockmeier, Austin [4 ]
机构
[1] RIKEN, Brain Sci Inst, Wako, Japan
[2] Inst Informat Theory & Automat, Prague, Czech Republic
[3] Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC USA
[4] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL USA
关键词
tensor decomposition; tensor completion; Kronecker tensor decomposition (KTD); color image; NONNEGATIVE MATRIX; THRESHOLDING ALGORITHM; RECONSTRUCTION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a novel decomposition approach to impute missing values in tensor data. The method uses smaller scale multiway patches to model the whole data or a small volume encompassing the observed missing entries. Simulations on color images show that our method can recover color images using only 5-10% of pixels, and outperforms other available tensor completion methods.
引用
收藏
页码:3233 / 3237
页数:5
相关论文
共 50 条
  • [21] The Category of!-Effect Algebras: Tensor Product and ω-Completion
    Lachman, Dominik
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2024,
  • [22] Rank minimization on tensor ring: an efficient approach for tensor decomposition and completion
    Longhao Yuan
    Chao Li
    Jianting Cao
    Qibin Zhao
    Machine Learning, 2020, 109 : 603 - 622
  • [23] Matrix and tensor completion using tensor ring decomposition with sparse representation
    Asante-Mensah, Maame G.
    Ahmadi-Asl, Salman
    Cichocki, Andrzej
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [24] AN APPLICATION OF THE KRONECKER PRODUCT OF MATRICES IN MULTIPLE REGRESSION
    CORNISH, EA
    BIOMETRICS, 1957, 13 (01) : 19 - 27
  • [25] Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition
    Bin Gao
    Renfeng Peng
    Ya-xiang Yuan
    Computational Optimization and Applications, 2024, 88 : 443 - 468
  • [26] Rank minimization on tensor ring: an efficient approach for tensor decomposition and completion
    Yuan, Longhao
    Li, Chao
    Cao, Jianting
    Zhao, Qibin
    MACHINE LEARNING, 2020, 109 (03) : 603 - 622
  • [27] Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition
    Gao, Bin
    Peng, Renfeng
    Yuan, Ya-xiang
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (02) : 443 - 468
  • [28] Robust tensor completion using transformed tensor singular value decomposition
    Song, Guangjing
    Ng, Michael K.
    Zhang, Xiongjun
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (03)
  • [29] Representing images by multiple Kronecker product sum
    Zhang, HX
    Qi, DX
    Tai, CL
    Bao, HJ
    CAD/ GRAPHICS TECHNOLOGY AND ITS APPLICATIONS, PROCEEDINGS, 2003, : 105 - 110
  • [30] A projection method and Kronecker product preconditioner for solving Sylvester tensor equations
    Chen Zhen
    Lu LinZhang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (06) : 1281 - 1292