Central limit theorems for cavity and local fields of the Sherrington-Kirkpatrick model

被引:1
|
作者
Chen, Wei-Kuo [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92717 USA
来源
关键词
Sherrington-Kirkpatrick model; Stein's method; TAP equations; SOLVABLE MODEL; SPIN-GLASS;
D O I
10.1214/EJP.v18-1763
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One of the remarkable applications of the cavity method in the mean field spin glasses is to prove the validity of the Thouless-Anderson-Palmer (TAP) system of equations in the Sherrington-Kirkpatrick (SK) model in the high temperature regime. This naturally leads us to the study of the limit laws for cavity and local fields. The first quantitative results for both fields were obtained by Chatterjee [1] using Stein's method. In this paper, we approach these problems using the Gaussian interpolation technique and establish central limit theorems for both fields by giving moment estimates of all orders.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [32] Study of longitudinal fluctuations of the Sherrington-Kirkpatrick model
    Parisi, G.
    Sarra, L.
    Talamanca, L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [33] Magnetic field chaos in the Sherrington-Kirkpatrick model
    Billoire, A
    Coluzzi, B
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [34] Nonequilibrium thermodynamics of the asymmetric Sherrington-Kirkpatrick model
    Miguel Aguilera
    Masanao Igarashi
    Hideaki Shimazaki
    Nature Communications, 14
  • [35] Bounds on the covariance matrix of the Sherrington-Kirkpatrick model
    El Alaoui, Ahmed
    Gaitonde, Jason
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2024, 29
  • [36] HIDDEN MATTIS PHASE IN THE SHERRINGTON-KIRKPATRICK MODEL
    MATSUDA, Y
    KASAI, Y
    OKIJI, A
    PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (05): : 1091 - 1092
  • [37] On the high temperature region of the Sherrington-Kirkpatrick model
    Talagrand, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (02): : 177 - 182
  • [38] On the replica symmetric solution for the Sherrington-Kirkpatrick model
    Shcherbina, M
    HELVETICA PHYSICA ACTA, 1997, 70 (06): : 838 - 853
  • [39] The Sherrington-Kirkpatrick model with short range ferromagnetic interactions
    Comets, F
    Giacomin, G
    Lebowitz, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (01): : 57 - 62
  • [40] On the tail of the overlap probability distribution in the Sherrington-Kirkpatrick model
    Billoire, A
    Franz, S
    Marinari, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (01): : 15 - 27