The Sparse Blume - Emery - Griffiths Model of Associative Memories

被引:0
|
作者
Heusel, J. [1 ]
Loewe, M. [1 ]
机构
[1] Univ Munster, Fachbereich Math & Informat, Einsteinstr 62, D-48149 Munster, Germany
关键词
Associative memory; storage capacity; sparse data; artificial intelligence; machine learning; exponential inequalities; negative association; STORAGE CAPACITY; NEURAL-NETWORKS; HOPFIELD MODEL; INFORMATION; RETRIEVAL; BOUNDS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze the Blume -Emery- Griffiths (BEG) associative memory with sparse patterns and at zero temperature. We give bounds on its storage capacity provided that we want the stored patterns to be fixed points of the retrieval dynamics. We compare our results to that of other models of sparse neural networks and show that the BEG model has a superior performance compared to them.
引用
收藏
页码:779 / 810
页数:32
相关论文
共 50 条
  • [21] The Blume–Emery–Griffiths Model on the FAD Point and on the AD Line
    Paulo C. Lima
    Riccardo Mariani
    Aldo Procacci
    Benedetto Scoppola
    Journal of Statistical Physics, 190
  • [22] CLUSTER VARIATION METHOD FOR THE BLUME-EMERY-GRIFFITHS MODEL
    BUZANO, C
    EVANGELISTA, LR
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1992, 104 (pt 1) : 231 - 232
  • [23] Random Blume-Emery-Griffiths model on the Bethe lattice
    Albayrak, Erhan
    PHYSICA B-CONDENSED MATTER, 2015, 479 : 107 - 111
  • [24] Phase diagram for a frustrated disordered Blume-Emery-Griffiths model
    Puha, I.
    Diep, H.T.
    Campbell, I.
    Journal of Applied Physics, 1999, 85 (8 pt 2B):
  • [25] Isotropic Blume-Emery-Griffiths model with four spin interactions
    Laaboudi, B.
    Kerouad, M.
    1996, Elsevier Science B.V., Amsterdam, Netherlands (164) : 1 - 2
  • [26] Gibbs Measures of the Blume-Emery-Griffiths Model on the Cayley Tree
    Botirov, G.
    Haydarov, F.
    Qayumov, U.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (01)
  • [27] Monte Carlo studies of extensions of the Blume-Emery-Griffiths model
    Loois, C. C.
    Barkema, G. T.
    Smith, C. Morais
    PHYSICAL REVIEW B, 2008, 78 (18)
  • [28] THE TRI-CRITICAL POINT IN THE BLUME-EMERY-GRIFFITHS MODEL
    TUCKER, JW
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (02) : 485 - 489
  • [29] Geometrical aspects of the multicritical phase diagrams for the Blume–Emery–Griffiths model
    Nigar Alata
    Rıza Erdem
    Gül Gülpınar
    The European Physical Journal Plus, 138
  • [30] The Blume-Emery-Griffiths Model on the FAD Point and on the AD Line
    Lima, Paulo C.
    Mariani, Riccardo
    Procacci, Aldo
    Scoppola, Benedetto
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (11)