Models of L-Band Radar Backscattering Coefficients Over Global Terrain for Soil Moisture Retrieval

被引:115
|
作者
Kim, Seung-Bum [1 ]
Moghaddam, Mahta [2 ]
Tsang, Leung [3 ]
Burgin, Mariko [2 ,4 ]
Xu, Xiaolan [1 ]
Njoku, Eni G. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Univ So Calif, Los Angeles, CA 90089 USA
[3] Univ Washington, Seattle, WA 98195 USA
[4] Univ Michigan, Ann Arbor, MI 48109 USA
来源
基金
美国国家航空航天局;
关键词
Radar scattering model; soil moisture; synthetic aperture radar (SAR); ELECTROMAGNETIC SCATTERING; MICROWAVE BACKSCATTERING; INVERSION TECHNIQUE; WATER-CONTENT; VEGETATION; SAR; SERIES; CORN;
D O I
10.1109/TGRS.2013.2250980
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Physical models for radar backscattering coefficients are developed for the global land surface at L-band (1.26 GHz) and 40 degrees incidence angle to apply to the soil moisture retrieval from the upcoming soil moisture active passive mission data. The simulation of land surface classes includes 12 vegetation types defined by the International Geosphere-Biosphere Programme scheme, and four major crops (wheat, corn, rice, and soybean). Backscattering coefficients for four polarizations (HH/VV/HV/350611873VH) are produced. In the physical models, three terms are considered within the framework of distorted Born approximation: surface scattering, double-bounce volume-surface interaction, and volume scattering. Numerical solutions of Maxwell equations as well as theoretical models are used for surface scattering, double-bounce reflectivity, and volume scattering of a single scatterer. To facilitate fast, real-time, and accurate inversion of soil moisture, the outputs of physical model are provided as lookup tables (with three axes; therefore called datacube). The three axes are the real part of the dielectric constant of soil, soil surface root mean square (RMS) height, and vegetation water content (VWC), each of, which covers the wide range of natural conditions. Datacubes for most of the classes are simulated using input parameters from in situ and airborne observations. This simulation results are found accurate to the co-pol RMS errors of < 1 to 3.4 dB (six woody vegetation types), 1.8 dB (grass), and 2.9 dB (corn) when compared with airborne data. Validated with independent spaceborne phased array type L-band synthetic aperture radars and field-based radar data, the datacube errors for the co-pols are within 3.4 dB (woody savanna and shrub) and 1.5 dB (bare surface). Assessed with spaceborne Aquarius scatterometer data, the mean differences range from similar to 1.5 to 2 dB. The datacubes allow direct inversion of sophisticated forward models without empirical parameters or formulae. This capability is evaluated using the time-series inversion algorithm over grass fields.
引用
收藏
页码:1381 / 1396
页数:16
相关论文
共 50 条
  • [21] Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval
    Joseph, A. T.
    van der Velde, R.
    O'Neill, P. E.
    Lang, R.
    Gish, T.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (11) : 2417 - 2430
  • [22] Soil moisture retrieval using L-band radiometry: Dependence on soil type and moisture profiles
    Monerris, A.
    Vall-Ilossera, M.
    Camps, A.
    Sabia, R.
    Villarino, R.
    Cardona, M.
    Alvarez, E.
    Sosa, S.
    2006 IEEE MICRORAD, 2006, : 171 - +
  • [23] A Parameterized Surface Emission Model at L-Band for Soil Moisture Retrieval
    Chen, Liang
    Shi, Jiancheng
    Wigneron, Jean-Pierre
    Chen, Kun-Shan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) : 127 - 130
  • [24] DERIVING SOIL MOISTURE WITH THE COMBINED L-BAND RADAR AND RADIOMETER MEASUREMENTS
    Shi, Jiancheng
    Chen, K. S.
    Tsang, L.
    Jackson, T.
    Njoku, E.
    Van Zyl, J.
    O' Neill, P.
    Entekhabi, D.
    Johnson, J.
    Moghaddam, M.
    Entekhabi, D.
    Johnson, J.
    Moghaddam, M.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 812 - 815
  • [25] Estimation of soil moisture with L-band multi-polarization radar
    Shi, J
    Chen, KS
    Kim, Y
    Van Zyl, JJ
    Sun, G
    O'Neill, P
    Jackson, T
    Entekhabi, D
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 815 - 818
  • [26] Estimation of soil moisture with the combined L-band radar and radiometer measurements
    Shi, JC
    Kim, Y
    van Zyl, JJ
    Njoku, E
    Jackson, T
    Chen, KS
    O'Neill, P
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 2767 - 2770
  • [27] Estimation of soil moisture with l-band multi-polarization radar
    Shi, JC
    MICROWAVE REMOTE SENSING OF THE ATMOSPHERE AND ENVIRONMENT IV, 2004, 5654 : 186 - 194
  • [28] SENSITIVITY OF MULTI-TEMPORAL L-BAND RADAR BACKSCATTERING POWER TO SOIL MOISTURE FOR TWO CROPS WITH CONTRASTING FEATURES
    Barber, M.
    Grings, F.
    Lopez-Martinez, C.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9114 - 9117
  • [29] Global retrieval of surface soil moisture using L-band SMAP SAR data and its validation
    Kim, S.
    Johnson, J.
    Moghaddam, M.
    Tsang, L.
    van Zyl, J.
    Colliander, A.
    Dunbar, S.
    Jackson, T.
    Jaruwatanadilok, S.
    West, R.
    Berg, A.
    Caldwell, T.
    Cosh, M.
    Lopez-Baeza, E.
    Thibeault, M.
    Walker, J.
    Entekhabi, D.
    Yueh, S.
    11TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2016), 2016, : 1118 - 1121
  • [30] Radar Bistatic Configuration for Soil Moisture Estimation at L-band Using Global Sensitivity Analysis Method
    Zeng, Jiangyuan
    Chen, Kun-Shan
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 169 - 175