Rectangular M-tensors and strong rectangular M-tensors

被引:2
|
作者
He, Jun [1 ]
Liu, Yanmin [1 ]
Xu, Guangjun [1 ]
机构
[1] Zunyi Normal Coll, Sch Math, Zunyi 563006, Guizhou, Peoples R China
来源
SCIENCEASIA | 2021年 / 47卷 / 02期
关键词
rectangular tensor; H-rectangular tensor; V-singular value; positive definiteness;
D O I
10.2306/scienceasia1513-1874.2021.035
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, two new classes of rectangular tensors called rectangular M-tensors and strong rectangular M-tensors are introduced. It is shown that an even-order partially symmetric rectangular M-tensor is positive semidefinite and an even-order partially symmetric strong rectangular M-tensor is positive definite. As a generalization of rectangular M-tensors, we introduce the rectangular H-tensors. In addition, some properties of (strong) rectangular M-tensors are established.
引用
收藏
页码:257 / 263
页数:7
相关论文
共 50 条
  • [21] Several New Estimates of the Minimum H-eigenvalue for Nonsingular M-tensors
    Cui, Jingjing
    Peng, Guohua
    Lu, Quan
    Huang, Zhengge
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 1213 - 1236
  • [22] BRUALDI-TYPE INEQUALITIES ON THE MINIMUM EIGENVALUE FOR THE FAN PRODUCT OF M-TENSORS
    Wang, Gang
    Wang, Yiju
    Zhang, Yuan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (05) : 2551 - 2562
  • [23] An index detecting algorithm for a class of TCP(A, q) equipped with nonsingular M-tensors
    He, Hongjin
    Bai, Xueli
    Ling, Chen
    Zhou, Guanglu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 394
  • [24] Some new inequalities for the minimum H-eigenvalue of nonsingular M-tensors
    Huang, Zheng-Ge
    Wang, Li-Gong
    Xu, Zhong
    Cui, Jing-Jing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 558 : 146 - 173
  • [25] Preconditioned Jacobi type method for solving multi-linear systems with M-tensors
    Zhang, Yaxiu
    Liu, Qilong
    Chen, Zhen
    APPLIED MATHEMATICS LETTERS, 2020, 104 (104)
  • [26] Neural networks based approach solving multi-linear systems with M-tensors
    Wang, Xuezhong
    Che, Maolin
    Wei, Yimin
    NEUROCOMPUTING, 2019, 351 (33-42) : 33 - 42
  • [27] A tensor Alternating Anderson-Richardson method for solving multilinear systems with M-tensors
    Niu, Jing
    Du, Lei
    Sogabe, Tomohiro
    Zhang, Shao-Liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 461
  • [28] MODIFIED SPLITTING METHODS FOR SOLVING NON-HOMOGENOUS MULTI-LINEAR EQUATIONS WITH M-TENSORS
    Deng, Ming-Yu
    Ding, Weiyang
    Guo, Xue-Ping
    PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (01): : 91 - 117
  • [29] PARTIALLY SYMMETRIC NONNEGATIVE RECTANGULAR TENSORS AND COPOSITIVE RECTANGULAR TENSORS
    Gu, Yining
    Wu, Wei
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (02) : 775 - 789
  • [30] Improving the Gauss-Seidel iterative method for solving multi-linear systems with M-tensors
    Nobakht-Kooshkghazi, Malihe
    Najafi-Kalyani, Mehdi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (02) : 1061 - 1077