Counting symmetric colorings of G x Z2

被引:1
|
作者
Phakathi, Jabulani [1 ]
Singh, Shivani [1 ]
Zelenyuk, Yevhen [1 ]
Zelenyuk, Yuliya [1 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
Finite Abelian group; symmetric coloring; equivalent colorings; Mobius function; dihedral group;
D O I
10.1142/S0219498819501998
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and let r is an element of N. An r-coloring of G is any mapping chi : G -> {1, . . . ,r}. A coloring chi is symmetric if there is g is an element of G such that chi(gx(-1)g) = chi(x) for every x is an element of G. We show that if G is Abelian and f(r) is the polynomial representing the number of symmetric r-colorings of G, then the number of symmetric r-colorings of G x Z(2) is f(r(2)). We also extend this result to the dihedral group D(G).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Modular Symmetries, Threshold Corrections and Moduli for Z2 x Z2 Orbifolds
    Bailin, D.
    Love, A.
    Sabra, W. A.
    Thomas, S.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 1994, 319
  • [32] Intersecting D-branes on shift Z2 x Z2 orientifolds
    Blumenhagen, Ralph
    Plauschinn, Erik
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (08):
  • [33] Towards machine learning in the classification of Z2 x Z2 orbifold compactifications
    Faraggi, A. E.
    Harries, G.
    Percival, B.
    Rizos, J.
    6TH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES - DISCRETE 2018, 2020, 1586
  • [34] Minimal extension of tribimaximal mixing and generalized Z2 x Z2 symmetries
    Gupta, Shivani
    Joshipura, Anjan S.
    Patel, Ketan M.
    PHYSICAL REVIEW D, 2012, 85 (03):
  • [35] Z2 x Z2 symmetry and Z4 Berry phase of bosonic ladders
    Kuno, Yoshihito
    Hatsugai, Yasuhiro
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [36] Grand unification of flavor by orbifold twisting Z2 and Z2 x Z12
    Kim, JE
    FIRST INTERNATIONAL CONFERENCE ON STRING PHENOMENOLOGY, 2003, : 173 - 178
  • [37] Z2 x Z2 generalizations of N=2 super Schrodinger algebras and their representations
    Aizawa, N.
    Segar, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [38] Nonsmoothable actions of Z2 x Z2 on spin four-manifolds
    Kato, Yuya
    TOPOLOGY AND ITS APPLICATIONS, 2022, 307
  • [39] Classification of the chiral Z2 X Z2 fermionic models in the heterotic superstring
    Faraggi, AE
    Kounnas, C
    Nooij, SEM
    Rizos, J
    NUCLEAR PHYSICS B, 2004, 695 (1-2) : 41 - 72
  • [40] Modular Symmetries, Threshold Corrections and Moduli for Z2 x Z2 Orbifolds
    Bailin, D.
    Love, A.
    Sabra, W. A.
    Thomas, S.
    Mathematical and Computer Modelling (Oxford), 21 (05):