Counting symmetric colorings of G x Z2

被引:1
|
作者
Phakathi, Jabulani [1 ]
Singh, Shivani [1 ]
Zelenyuk, Yevhen [1 ]
Zelenyuk, Yuliya [1 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
Finite Abelian group; symmetric coloring; equivalent colorings; Mobius function; dihedral group;
D O I
10.1142/S0219498819501998
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and let r is an element of N. An r-coloring of G is any mapping chi : G -> {1, . . . ,r}. A coloring chi is symmetric if there is g is an element of G such that chi(gx(-1)g) = chi(x) for every x is an element of G. We show that if G is Abelian and f(r) is the polynomial representing the number of symmetric r-colorings of G, then the number of symmetric r-colorings of G x Z(2) is f(r(2)). We also extend this result to the dihedral group D(G).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Symmetric colorings of G X Z2
    Phakathi, Jabulani
    Zelenyuk, Yevhen
    Zelenyuk, Yuliya
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (02) : 381 - 387
  • [2] Z2 x Z2-symmetric spaces
    Bahturin, Yuri
    Goze, Michel
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 236 (01) : 1 - 21
  • [3] EXCEPTIONAL Z2 x Z2-SYMMETRIC SPACES
    Kollross, Andreas
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 242 (01) : 113 - 130
  • [4] A Z2 x Z2 standard model
    Blaszczyk, Michael
    Nibbelink, Stefan Groot
    Ratz, Michael
    Ruehle, Fabian
    Trapletti, Michele
    Vaudrevange, Patrick K. S.
    PHYSICS LETTERS B, 2010, 683 (4-5) : 340 - 348
  • [5] Random sampling of 3-colorings in Z2
    Goldberg, LA
    Martin, R
    Paterson, M
    RANDOM STRUCTURES & ALGORITHMS, 2004, 24 (03) : 279 - 302
  • [6] Proper 3-colorings of Z2 are Bernoulli
    Ray, Gourab
    Spinka, Yinon
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (06) : 2002 - 2027
  • [7] Equivariant formality of the isotropy action on (Z2 ⊕ Z2)-symmetric spaces
    Amann, Manuel
    Kollross, Andreas
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023,
  • [9] Quantum phase transition from Z2 x Z2 to Z2 topological order
    Zarei, Mohammad Hossein
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [10] Chaotic behavior in a Z2 x Z2 field theory
    Latora, V
    Bazeia, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (31): : 4967 - 4984