Simulation of floating bodies with the lattice Boltzmann method

被引:18
|
作者
Bogner, Simon [1 ]
Ruede, Ulrich [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Syst Simulat, D-91058 Erlangen, Germany
关键词
Lattice Boltzmann; Free surface; Interface capturing; Particulate flow; Floating body; Fluid-structure interaction; PARTICULATE SUSPENSIONS; NUMERICAL SIMULATIONS; FLUID; EQUATION; MODELS; PARTICLES;
D O I
10.1016/j.camwa.2012.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the simulation of floating rigid bodies in free surface flows. For that, a lattice Boltzmann based model for liquid-gas-solid flows is presented. The approach is built upon previous work for the simulation of liquid-solid particle suspensions on the one hand, and on an interface-capturing technique for liquid-gas free surface flows on the other. The incompressible liquid flow is approximated by a lattice Boltzmann scheme, while the dynamics of the compressible gas are neglected. We show how the particle model and the interface capturing technique can be combined by a novel set of dynamic cell conversion rules. We also evaluate the behaviour of the free surface - particle interaction in simulations. One test case is the rotational stability of non-spherical rigid bodies floating on a plane water surface - a classical hydrostatic problem known from naval architecture. We show the consistency of our method in this kind of flows and obtain convergence towards the ideal solution for the heeling stability of a floating box. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:901 / 913
页数:13
相关论文
共 50 条
  • [31] Simulation of microchannel flow using the lattice Boltzmann method
    Chen, Sheng
    Tian, Zhiwei
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (23) : 4803 - 4810
  • [32] Underfill flow simulation based on lattice Boltzmann method
    Wang, Hui
    Hao, Xufei
    Zhou, Huamin
    Zhang, Yun
    Li, Dequn
    MICROELECTRONIC ENGINEERING, 2016, 149 : 66 - 72
  • [33] Entropic lattice Boltzmann method for simulation of thermal flows
    Prasianakis, N. I.
    Chikatamarla, S. S.
    Karlin, I. V.
    Ansumali, S.
    Boulouchos, K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 72 (2-6) : 179 - 183
  • [34] Simulation of Hydrodynamic Phenomena by the Lattice-Boltzmann Method
    Chen Juhua
    Xiong Shengwu
    Li Yuanxiang(State Key Laboratory of Software Engineering
    WuhanUniversityJournalofNaturalSciences, 1996, (Z1) : 696 - 700
  • [35] Numerical simulation of bubble flows by the lattice Boltzmann method
    Inamuro, T
    Ogata, T
    Ogino, F
    FUTURE GENERATION COMPUTER SYSTEMS, 2004, 20 (06) : 959 - 964
  • [36] Meshless lattice Boltzmann method for the simulation of fluid flows
    Musavi, S. Hossein
    Ashrafizaadeh, Mahmud
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [37] Simulation the environment pollution evolution with Lattice Boltzmann Method
    Qiao, Yanchao
    Guo, Ziqi
    Shi, Yaolin
    EMERGING MATERIALS AND MECHANICS APPLICATIONS, 2012, 487 : 491 - +
  • [38] A Simplified Lattice Boltzmann Method for Turbulent Flow Simulation
    Jiang, Lan
    Gu, Xiangyu
    Wu, Jie
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (05) : 1040 - 1058
  • [39] Numerical simulation of compressible flows by lattice Boltzmann method
    Shadloo, Mostafa Safdari
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2019, 75 (03) : 167 - 182
  • [40] Lattice Boltzmann method for the simulation of viscoelastic fluid flows
    Malaspinas, O.
    Fietier, N.
    Deville, M.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (23-24) : 1637 - 1653